SYNTHESIS, CHARACTERIZATION, ADSORPTION AND THERMODYNAMIC STUDIES OF PURE AND BINARY CO2-N2 MIXTURES ON OXYGEN ENRICHED NANOSTRUCTURED CARBON ADSORBENTS

Detalhes bibliográficos
Autor(a) principal: Tiwari,Deepak
Data de Publicação: 2019
Outros Autores: Bhunia,Haripada, Bajpai,Pramod K.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Brazilian Journal of Chemical Engineering
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322019000301319
Resumo: Abstract Oxygen enriched porous carbons have been synthesized by a nanocasting technique using mesoporous zeolite as template and epoxy resin as precursor. Characterization results show the effect of the nanocasting technique on the development of heterogeneous surface, high basicity, and high surface area of 686.37 m2g-1, beneficial for CO2 adsorption. Pure component adsorption isotherms were correlated with Langmuir, Sips, and dual-site Langmuir (DSL) models and found that Sips and DSL isotherm models fitted well, indicating thre heterogeneous nature of the adsorbent surface. Dynamic breakthrough data for the binary system CO2-N2 were obtained using a fixed-bed column at different adsorption temperatures (30-100 °C) and CO2 feed concentrations (5-12.5% by volume). The developed adsorbent shows high adsorption capacity with complete regenerability over four adsorption/desorption cycles. Prediction of binary components (CO2-N2) was made by using extended Sips, extended DSL and IAST (ideal adsorbed solution theory) by utilizing pure component adsorption isotherm data. Experimental and predicted equilibrium data were compared with breakthrough curve data and it was found that the extended forms (Sips and DSL) indicated under-predicted CO2 adsorption equilibria because of differences in adsorptive strengths of CO2 and N2 molecules. Also, adsorption equilibria were closely predicted using IAST theory. Asymmetric x-y diagrams from Raoult’s law indicated positive deviation, implying that as the CO2 gas phase molar fraction increases, total adsorbed amounts increase. Negative values of molar Gibbs free energy change suggested feasibility of the adsorption process. Formation of a more ordered configuration of CO2 molecules on the adsorbent surface was seen as a higher heat of adsorption was exhibited for CO2 as compared to N2.
id ABEQ-1_7fb46f7b247c91ddba5e3e19e6402022
oai_identifier_str oai:scielo:S0104-66322019000301319
network_acronym_str ABEQ-1
network_name_str Brazilian Journal of Chemical Engineering
repository_id_str
spelling SYNTHESIS, CHARACTERIZATION, ADSORPTION AND THERMODYNAMIC STUDIES OF PURE AND BINARY CO2-N2 MIXTURES ON OXYGEN ENRICHED NANOSTRUCTURED CARBON ADSORBENTSNanocasting, extended sipsExtended DSLIASTSelectivityAbstract Oxygen enriched porous carbons have been synthesized by a nanocasting technique using mesoporous zeolite as template and epoxy resin as precursor. Characterization results show the effect of the nanocasting technique on the development of heterogeneous surface, high basicity, and high surface area of 686.37 m2g-1, beneficial for CO2 adsorption. Pure component adsorption isotherms were correlated with Langmuir, Sips, and dual-site Langmuir (DSL) models and found that Sips and DSL isotherm models fitted well, indicating thre heterogeneous nature of the adsorbent surface. Dynamic breakthrough data for the binary system CO2-N2 were obtained using a fixed-bed column at different adsorption temperatures (30-100 °C) and CO2 feed concentrations (5-12.5% by volume). The developed adsorbent shows high adsorption capacity with complete regenerability over four adsorption/desorption cycles. Prediction of binary components (CO2-N2) was made by using extended Sips, extended DSL and IAST (ideal adsorbed solution theory) by utilizing pure component adsorption isotherm data. Experimental and predicted equilibrium data were compared with breakthrough curve data and it was found that the extended forms (Sips and DSL) indicated under-predicted CO2 adsorption equilibria because of differences in adsorptive strengths of CO2 and N2 molecules. Also, adsorption equilibria were closely predicted using IAST theory. Asymmetric x-y diagrams from Raoult’s law indicated positive deviation, implying that as the CO2 gas phase molar fraction increases, total adsorbed amounts increase. Negative values of molar Gibbs free energy change suggested feasibility of the adsorption process. Formation of a more ordered configuration of CO2 molecules on the adsorbent surface was seen as a higher heat of adsorption was exhibited for CO2 as compared to N2.Brazilian Society of Chemical Engineering2019-07-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322019000301319Brazilian Journal of Chemical Engineering v.36 n.3 2019reponame:Brazilian Journal of Chemical Engineeringinstname:Associação Brasileira de Engenharia Química (ABEQ)instacron:ABEQ10.1590/0104-6632.20190363s20180036info:eu-repo/semantics/openAccessTiwari,DeepakBhunia,HaripadaBajpai,Pramod K.eng2019-12-04T00:00:00Zoai:scielo:S0104-66322019000301319Revistahttps://www.scielo.br/j/bjce/https://old.scielo.br/oai/scielo-oai.phprgiudici@usp.br||rgiudici@usp.br1678-43830104-6632opendoar:2019-12-04T00:00Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ)false
dc.title.none.fl_str_mv SYNTHESIS, CHARACTERIZATION, ADSORPTION AND THERMODYNAMIC STUDIES OF PURE AND BINARY CO2-N2 MIXTURES ON OXYGEN ENRICHED NANOSTRUCTURED CARBON ADSORBENTS
title SYNTHESIS, CHARACTERIZATION, ADSORPTION AND THERMODYNAMIC STUDIES OF PURE AND BINARY CO2-N2 MIXTURES ON OXYGEN ENRICHED NANOSTRUCTURED CARBON ADSORBENTS
spellingShingle SYNTHESIS, CHARACTERIZATION, ADSORPTION AND THERMODYNAMIC STUDIES OF PURE AND BINARY CO2-N2 MIXTURES ON OXYGEN ENRICHED NANOSTRUCTURED CARBON ADSORBENTS
Tiwari,Deepak
Nanocasting, extended sips
Extended DSL
IAST
Selectivity
title_short SYNTHESIS, CHARACTERIZATION, ADSORPTION AND THERMODYNAMIC STUDIES OF PURE AND BINARY CO2-N2 MIXTURES ON OXYGEN ENRICHED NANOSTRUCTURED CARBON ADSORBENTS
title_full SYNTHESIS, CHARACTERIZATION, ADSORPTION AND THERMODYNAMIC STUDIES OF PURE AND BINARY CO2-N2 MIXTURES ON OXYGEN ENRICHED NANOSTRUCTURED CARBON ADSORBENTS
title_fullStr SYNTHESIS, CHARACTERIZATION, ADSORPTION AND THERMODYNAMIC STUDIES OF PURE AND BINARY CO2-N2 MIXTURES ON OXYGEN ENRICHED NANOSTRUCTURED CARBON ADSORBENTS
title_full_unstemmed SYNTHESIS, CHARACTERIZATION, ADSORPTION AND THERMODYNAMIC STUDIES OF PURE AND BINARY CO2-N2 MIXTURES ON OXYGEN ENRICHED NANOSTRUCTURED CARBON ADSORBENTS
title_sort SYNTHESIS, CHARACTERIZATION, ADSORPTION AND THERMODYNAMIC STUDIES OF PURE AND BINARY CO2-N2 MIXTURES ON OXYGEN ENRICHED NANOSTRUCTURED CARBON ADSORBENTS
author Tiwari,Deepak
author_facet Tiwari,Deepak
Bhunia,Haripada
Bajpai,Pramod K.
author_role author
author2 Bhunia,Haripada
Bajpai,Pramod K.
author2_role author
author
dc.contributor.author.fl_str_mv Tiwari,Deepak
Bhunia,Haripada
Bajpai,Pramod K.
dc.subject.por.fl_str_mv Nanocasting, extended sips
Extended DSL
IAST
Selectivity
topic Nanocasting, extended sips
Extended DSL
IAST
Selectivity
description Abstract Oxygen enriched porous carbons have been synthesized by a nanocasting technique using mesoporous zeolite as template and epoxy resin as precursor. Characterization results show the effect of the nanocasting technique on the development of heterogeneous surface, high basicity, and high surface area of 686.37 m2g-1, beneficial for CO2 adsorption. Pure component adsorption isotherms were correlated with Langmuir, Sips, and dual-site Langmuir (DSL) models and found that Sips and DSL isotherm models fitted well, indicating thre heterogeneous nature of the adsorbent surface. Dynamic breakthrough data for the binary system CO2-N2 were obtained using a fixed-bed column at different adsorption temperatures (30-100 °C) and CO2 feed concentrations (5-12.5% by volume). The developed adsorbent shows high adsorption capacity with complete regenerability over four adsorption/desorption cycles. Prediction of binary components (CO2-N2) was made by using extended Sips, extended DSL and IAST (ideal adsorbed solution theory) by utilizing pure component adsorption isotherm data. Experimental and predicted equilibrium data were compared with breakthrough curve data and it was found that the extended forms (Sips and DSL) indicated under-predicted CO2 adsorption equilibria because of differences in adsorptive strengths of CO2 and N2 molecules. Also, adsorption equilibria were closely predicted using IAST theory. Asymmetric x-y diagrams from Raoult’s law indicated positive deviation, implying that as the CO2 gas phase molar fraction increases, total adsorbed amounts increase. Negative values of molar Gibbs free energy change suggested feasibility of the adsorption process. Formation of a more ordered configuration of CO2 molecules on the adsorbent surface was seen as a higher heat of adsorption was exhibited for CO2 as compared to N2.
publishDate 2019
dc.date.none.fl_str_mv 2019-07-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322019000301319
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322019000301319
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/0104-6632.20190363s20180036
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Brazilian Society of Chemical Engineering
publisher.none.fl_str_mv Brazilian Society of Chemical Engineering
dc.source.none.fl_str_mv Brazilian Journal of Chemical Engineering v.36 n.3 2019
reponame:Brazilian Journal of Chemical Engineering
instname:Associação Brasileira de Engenharia Química (ABEQ)
instacron:ABEQ
instname_str Associação Brasileira de Engenharia Química (ABEQ)
instacron_str ABEQ
institution ABEQ
reponame_str Brazilian Journal of Chemical Engineering
collection Brazilian Journal of Chemical Engineering
repository.name.fl_str_mv Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ)
repository.mail.fl_str_mv rgiudici@usp.br||rgiudici@usp.br
_version_ 1754213176707121152