Degradation of 2-hydroxybenzoic acid by advanced oxidation processes
Autor(a) principal: | |
---|---|
Data de Publicação: | 2009 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Brazilian Journal of Chemical Engineering |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322009000300006 |
Resumo: | In this study, advanced oxidation processes (AOPs) such as the UV/H2O2 and Fenton processes were investigated for the degradation of 2-hydroxybenzoic acid (2-HBA) in lab-scale experiments. Different [H2O2]/[2-HBA] molar ratios and pH values were used in order to establish the most favorable experimental conditions for the Fenton process. For comparison purposes, degradation of 2-HBA was carried out by the UV/H2O2 process under Fenton experimental conditions. The study showed that the Fenton process (a mixture of hydrogen peroxide and Fe2+ ion) was the most effective under acidic conditions, leading to the highest rate of 2-hydroxybenzoic acid degradation in a very short time interval. This same process led to a six-fold acceleration of the oxidation rate compared with the UV/H2O2 process. The degradation of 2-hydroxybenzoic acid was found to follow first-order kinetics and to be influenced by the type of process and the experimental conditions. The experimental results showed that the most favorable conditions for 2-HBA degradation by the Fenton process are pH around 4-5, [Fe2+] = 0.6 mmol.L-1, and [H2O2]/[2-HBA] molar ratio = 7. The hydroxylation route is explained here for the two processes, and the results are discussed in the light of literature information. |
id |
ABEQ-1_958cb2e07e8dc237086227365f4bf1ce |
---|---|
oai_identifier_str |
oai:scielo:S0104-66322009000300006 |
network_acronym_str |
ABEQ-1 |
network_name_str |
Brazilian Journal of Chemical Engineering |
repository_id_str |
|
spelling |
Degradation of 2-hydroxybenzoic acid by advanced oxidation processesAdvanced oxidation processes2-hydroxybenzoic acidWaste treatmentIn this study, advanced oxidation processes (AOPs) such as the UV/H2O2 and Fenton processes were investigated for the degradation of 2-hydroxybenzoic acid (2-HBA) in lab-scale experiments. Different [H2O2]/[2-HBA] molar ratios and pH values were used in order to establish the most favorable experimental conditions for the Fenton process. For comparison purposes, degradation of 2-HBA was carried out by the UV/H2O2 process under Fenton experimental conditions. The study showed that the Fenton process (a mixture of hydrogen peroxide and Fe2+ ion) was the most effective under acidic conditions, leading to the highest rate of 2-hydroxybenzoic acid degradation in a very short time interval. This same process led to a six-fold acceleration of the oxidation rate compared with the UV/H2O2 process. The degradation of 2-hydroxybenzoic acid was found to follow first-order kinetics and to be influenced by the type of process and the experimental conditions. The experimental results showed that the most favorable conditions for 2-HBA degradation by the Fenton process are pH around 4-5, [Fe2+] = 0.6 mmol.L-1, and [H2O2]/[2-HBA] molar ratio = 7. The hydroxylation route is explained here for the two processes, and the results are discussed in the light of literature information.Brazilian Society of Chemical Engineering2009-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322009000300006Brazilian Journal of Chemical Engineering v.26 n.3 2009reponame:Brazilian Journal of Chemical Engineeringinstname:Associação Brasileira de Engenharia Química (ABEQ)instacron:ABEQ10.1590/S0104-66322009000300006info:eu-repo/semantics/openAccessZanta,C. L. P. S.Martínez-Huitle,C. A.eng2009-09-01T00:00:00Zoai:scielo:S0104-66322009000300006Revistahttps://www.scielo.br/j/bjce/https://old.scielo.br/oai/scielo-oai.phprgiudici@usp.br||rgiudici@usp.br1678-43830104-6632opendoar:2009-09-01T00:00Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ)false |
dc.title.none.fl_str_mv |
Degradation of 2-hydroxybenzoic acid by advanced oxidation processes |
title |
Degradation of 2-hydroxybenzoic acid by advanced oxidation processes |
spellingShingle |
Degradation of 2-hydroxybenzoic acid by advanced oxidation processes Zanta,C. L. P. S. Advanced oxidation processes 2-hydroxybenzoic acid Waste treatment |
title_short |
Degradation of 2-hydroxybenzoic acid by advanced oxidation processes |
title_full |
Degradation of 2-hydroxybenzoic acid by advanced oxidation processes |
title_fullStr |
Degradation of 2-hydroxybenzoic acid by advanced oxidation processes |
title_full_unstemmed |
Degradation of 2-hydroxybenzoic acid by advanced oxidation processes |
title_sort |
Degradation of 2-hydroxybenzoic acid by advanced oxidation processes |
author |
Zanta,C. L. P. S. |
author_facet |
Zanta,C. L. P. S. Martínez-Huitle,C. A. |
author_role |
author |
author2 |
Martínez-Huitle,C. A. |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Zanta,C. L. P. S. Martínez-Huitle,C. A. |
dc.subject.por.fl_str_mv |
Advanced oxidation processes 2-hydroxybenzoic acid Waste treatment |
topic |
Advanced oxidation processes 2-hydroxybenzoic acid Waste treatment |
description |
In this study, advanced oxidation processes (AOPs) such as the UV/H2O2 and Fenton processes were investigated for the degradation of 2-hydroxybenzoic acid (2-HBA) in lab-scale experiments. Different [H2O2]/[2-HBA] molar ratios and pH values were used in order to establish the most favorable experimental conditions for the Fenton process. For comparison purposes, degradation of 2-HBA was carried out by the UV/H2O2 process under Fenton experimental conditions. The study showed that the Fenton process (a mixture of hydrogen peroxide and Fe2+ ion) was the most effective under acidic conditions, leading to the highest rate of 2-hydroxybenzoic acid degradation in a very short time interval. This same process led to a six-fold acceleration of the oxidation rate compared with the UV/H2O2 process. The degradation of 2-hydroxybenzoic acid was found to follow first-order kinetics and to be influenced by the type of process and the experimental conditions. The experimental results showed that the most favorable conditions for 2-HBA degradation by the Fenton process are pH around 4-5, [Fe2+] = 0.6 mmol.L-1, and [H2O2]/[2-HBA] molar ratio = 7. The hydroxylation route is explained here for the two processes, and the results are discussed in the light of literature information. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-09-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322009000300006 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322009000300006 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0104-66322009000300006 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Brazilian Society of Chemical Engineering |
publisher.none.fl_str_mv |
Brazilian Society of Chemical Engineering |
dc.source.none.fl_str_mv |
Brazilian Journal of Chemical Engineering v.26 n.3 2009 reponame:Brazilian Journal of Chemical Engineering instname:Associação Brasileira de Engenharia Química (ABEQ) instacron:ABEQ |
instname_str |
Associação Brasileira de Engenharia Química (ABEQ) |
instacron_str |
ABEQ |
institution |
ABEQ |
reponame_str |
Brazilian Journal of Chemical Engineering |
collection |
Brazilian Journal of Chemical Engineering |
repository.name.fl_str_mv |
Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ) |
repository.mail.fl_str_mv |
rgiudici@usp.br||rgiudici@usp.br |
_version_ |
1754213173039202304 |