The influence of pH, temperature and hydrolyzate concentration on the removal of volatile and nonvolatile compounds from sugarcane bagasse hemicellulosic hydrolyzate treated with activated charcoal before or after vacuum evaporation

Detalhes bibliográficos
Autor(a) principal: Rodrigues,R.C.L.B.
Data de Publicação: 2001
Outros Autores: Felipe,M.G.A., Silva,J.B.Almeida e, Vitolo,M., Gómez,P.V.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Brazilian Journal of Chemical Engineering
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322001000300009
Resumo: This paper analyzes the influence of pH, temperature and degree of hydrolyzate concentration on the removal of volatile and nonvolatile compounds from sugarcane bagasse hemicellulosic hydrolyzate treated with activated charcoal before or after the vacuum evaporation process. Furfural and 5-Hydroxymethylfurfural were almost totally removed in all the experiments, irrespective of pH and temperature and whether the charcoal was added before or after the vacuum evaporation process. Adding activated charcoal before the vacuum evaporation process favored the removal of phenolic compounds for all values of pH. Acetic acid, on the contrary, was most effectively removed when the activated charcoal was added after the vacuum evaporation process at an acid pH (0.92) and at the highest degree of hydrolyzate concentration (f=4). However, addition of activated charcoal before or after vacuum evaporation at an acid pH (0.92) and at the highest degree of hydrolyzate concentration (f=4) favored the removal of both acetic acid and phenolic compounds.
id ABEQ-1_95ad63c048f466fe9c485563ac312027
oai_identifier_str oai:scielo:S0104-66322001000300009
network_acronym_str ABEQ-1
network_name_str Brazilian Journal of Chemical Engineering
repository_id_str
spelling The influence of pH, temperature and hydrolyzate concentration on the removal of volatile and nonvolatile compounds from sugarcane bagasse hemicellulosic hydrolyzate treated with activated charcoal before or after vacuum evaporationSugarcane bagassehemicellulosic hydrolyzatevacuum evaporationactivated charcoalacetic acidphenolic compoundsThis paper analyzes the influence of pH, temperature and degree of hydrolyzate concentration on the removal of volatile and nonvolatile compounds from sugarcane bagasse hemicellulosic hydrolyzate treated with activated charcoal before or after the vacuum evaporation process. Furfural and 5-Hydroxymethylfurfural were almost totally removed in all the experiments, irrespective of pH and temperature and whether the charcoal was added before or after the vacuum evaporation process. Adding activated charcoal before the vacuum evaporation process favored the removal of phenolic compounds for all values of pH. Acetic acid, on the contrary, was most effectively removed when the activated charcoal was added after the vacuum evaporation process at an acid pH (0.92) and at the highest degree of hydrolyzate concentration (f=4). However, addition of activated charcoal before or after vacuum evaporation at an acid pH (0.92) and at the highest degree of hydrolyzate concentration (f=4) favored the removal of both acetic acid and phenolic compounds.Brazilian Society of Chemical Engineering2001-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322001000300009Brazilian Journal of Chemical Engineering v.18 n.3 2001reponame:Brazilian Journal of Chemical Engineeringinstname:Associação Brasileira de Engenharia Química (ABEQ)instacron:ABEQ10.1590/S0104-66322001000300009info:eu-repo/semantics/openAccessRodrigues,R.C.L.B.Felipe,M.G.A.Silva,J.B.Almeida eVitolo,M.Gómez,P.V.eng2001-10-10T00:00:00Zoai:scielo:S0104-66322001000300009Revistahttps://www.scielo.br/j/bjce/https://old.scielo.br/oai/scielo-oai.phprgiudici@usp.br||rgiudici@usp.br1678-43830104-6632opendoar:2001-10-10T00:00Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ)false
dc.title.none.fl_str_mv The influence of pH, temperature and hydrolyzate concentration on the removal of volatile and nonvolatile compounds from sugarcane bagasse hemicellulosic hydrolyzate treated with activated charcoal before or after vacuum evaporation
title The influence of pH, temperature and hydrolyzate concentration on the removal of volatile and nonvolatile compounds from sugarcane bagasse hemicellulosic hydrolyzate treated with activated charcoal before or after vacuum evaporation
spellingShingle The influence of pH, temperature and hydrolyzate concentration on the removal of volatile and nonvolatile compounds from sugarcane bagasse hemicellulosic hydrolyzate treated with activated charcoal before or after vacuum evaporation
Rodrigues,R.C.L.B.
Sugarcane bagasse
hemicellulosic hydrolyzate
vacuum evaporation
activated charcoal
acetic acid
phenolic compounds
title_short The influence of pH, temperature and hydrolyzate concentration on the removal of volatile and nonvolatile compounds from sugarcane bagasse hemicellulosic hydrolyzate treated with activated charcoal before or after vacuum evaporation
title_full The influence of pH, temperature and hydrolyzate concentration on the removal of volatile and nonvolatile compounds from sugarcane bagasse hemicellulosic hydrolyzate treated with activated charcoal before or after vacuum evaporation
title_fullStr The influence of pH, temperature and hydrolyzate concentration on the removal of volatile and nonvolatile compounds from sugarcane bagasse hemicellulosic hydrolyzate treated with activated charcoal before or after vacuum evaporation
title_full_unstemmed The influence of pH, temperature and hydrolyzate concentration on the removal of volatile and nonvolatile compounds from sugarcane bagasse hemicellulosic hydrolyzate treated with activated charcoal before or after vacuum evaporation
title_sort The influence of pH, temperature and hydrolyzate concentration on the removal of volatile and nonvolatile compounds from sugarcane bagasse hemicellulosic hydrolyzate treated with activated charcoal before or after vacuum evaporation
author Rodrigues,R.C.L.B.
author_facet Rodrigues,R.C.L.B.
Felipe,M.G.A.
Silva,J.B.Almeida e
Vitolo,M.
Gómez,P.V.
author_role author
author2 Felipe,M.G.A.
Silva,J.B.Almeida e
Vitolo,M.
Gómez,P.V.
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Rodrigues,R.C.L.B.
Felipe,M.G.A.
Silva,J.B.Almeida e
Vitolo,M.
Gómez,P.V.
dc.subject.por.fl_str_mv Sugarcane bagasse
hemicellulosic hydrolyzate
vacuum evaporation
activated charcoal
acetic acid
phenolic compounds
topic Sugarcane bagasse
hemicellulosic hydrolyzate
vacuum evaporation
activated charcoal
acetic acid
phenolic compounds
description This paper analyzes the influence of pH, temperature and degree of hydrolyzate concentration on the removal of volatile and nonvolatile compounds from sugarcane bagasse hemicellulosic hydrolyzate treated with activated charcoal before or after the vacuum evaporation process. Furfural and 5-Hydroxymethylfurfural were almost totally removed in all the experiments, irrespective of pH and temperature and whether the charcoal was added before or after the vacuum evaporation process. Adding activated charcoal before the vacuum evaporation process favored the removal of phenolic compounds for all values of pH. Acetic acid, on the contrary, was most effectively removed when the activated charcoal was added after the vacuum evaporation process at an acid pH (0.92) and at the highest degree of hydrolyzate concentration (f=4). However, addition of activated charcoal before or after vacuum evaporation at an acid pH (0.92) and at the highest degree of hydrolyzate concentration (f=4) favored the removal of both acetic acid and phenolic compounds.
publishDate 2001
dc.date.none.fl_str_mv 2001-09-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322001000300009
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322001000300009
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S0104-66322001000300009
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Brazilian Society of Chemical Engineering
publisher.none.fl_str_mv Brazilian Society of Chemical Engineering
dc.source.none.fl_str_mv Brazilian Journal of Chemical Engineering v.18 n.3 2001
reponame:Brazilian Journal of Chemical Engineering
instname:Associação Brasileira de Engenharia Química (ABEQ)
instacron:ABEQ
instname_str Associação Brasileira de Engenharia Química (ABEQ)
instacron_str ABEQ
institution ABEQ
reponame_str Brazilian Journal of Chemical Engineering
collection Brazilian Journal of Chemical Engineering
repository.name.fl_str_mv Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ)
repository.mail.fl_str_mv rgiudici@usp.br||rgiudici@usp.br
_version_ 1754213171099336704