Production of ultrafine zinc powder from wastes containing zinc by electrowinning in alkaline solution
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Brazilian Journal of Chemical Engineering |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322013000400017 |
Resumo: | Production of ultrafine zinc powder from industrial wastes by electrowinning in alkaline solution was studied. Stainless steel and magnesium electrodes were used as anode and cathode, respectively. Morphology, size distribution and composition of the Zn particles were characterized by Scanning Electron Microscopy, Laser Particle Size Analyzer, and Inductive Coupled Plasma Emission Spectrometer. The required composition of the electrolyte for ultrafine particles was found to be 25-35 g/L Zn, 200-220 g/L NaOH and 20-40 mg/L Pb. The optimal conditions were a current density of 1000-1200 A/m² and an electrolyte temperature of 30-40 °C. The results indicated that the lead additive exerted a beneficial effect on the refining of the particles, by increasing the cathodic polarization. Through this study, ultrafine zinc powder with a size distribution of around 10 μm could be produced, and considerably high current efficiencies (97-99 %) were obtained. |
id |
ABEQ-1_ac74d5fc1f650f18852c942cc797615d |
---|---|
oai_identifier_str |
oai:scielo:S0104-66322013000400017 |
network_acronym_str |
ABEQ-1 |
network_name_str |
Brazilian Journal of Chemical Engineering |
repository_id_str |
|
spelling |
Production of ultrafine zinc powder from wastes containing zinc by electrowinning in alkaline solutionElectrolysisUltrafineAlkaline mediumLeadProduction of ultrafine zinc powder from industrial wastes by electrowinning in alkaline solution was studied. Stainless steel and magnesium electrodes were used as anode and cathode, respectively. Morphology, size distribution and composition of the Zn particles were characterized by Scanning Electron Microscopy, Laser Particle Size Analyzer, and Inductive Coupled Plasma Emission Spectrometer. The required composition of the electrolyte for ultrafine particles was found to be 25-35 g/L Zn, 200-220 g/L NaOH and 20-40 mg/L Pb. The optimal conditions were a current density of 1000-1200 A/m² and an electrolyte temperature of 30-40 °C. The results indicated that the lead additive exerted a beneficial effect on the refining of the particles, by increasing the cathodic polarization. Through this study, ultrafine zinc powder with a size distribution of around 10 μm could be produced, and considerably high current efficiencies (97-99 %) were obtained.Brazilian Society of Chemical Engineering2013-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322013000400017Brazilian Journal of Chemical Engineering v.30 n.4 2013reponame:Brazilian Journal of Chemical Engineeringinstname:Associação Brasileira de Engenharia Química (ABEQ)instacron:ABEQ10.1590/S0104-66322013000400017info:eu-repo/semantics/openAccessYoucai,ZhaoQiang,LiChenglong,ZhangJiachao,Jiangeng2014-01-10T00:00:00Zoai:scielo:S0104-66322013000400017Revistahttps://www.scielo.br/j/bjce/https://old.scielo.br/oai/scielo-oai.phprgiudici@usp.br||rgiudici@usp.br1678-43830104-6632opendoar:2014-01-10T00:00Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ)false |
dc.title.none.fl_str_mv |
Production of ultrafine zinc powder from wastes containing zinc by electrowinning in alkaline solution |
title |
Production of ultrafine zinc powder from wastes containing zinc by electrowinning in alkaline solution |
spellingShingle |
Production of ultrafine zinc powder from wastes containing zinc by electrowinning in alkaline solution Youcai,Zhao Electrolysis Ultrafine Alkaline medium Lead |
title_short |
Production of ultrafine zinc powder from wastes containing zinc by electrowinning in alkaline solution |
title_full |
Production of ultrafine zinc powder from wastes containing zinc by electrowinning in alkaline solution |
title_fullStr |
Production of ultrafine zinc powder from wastes containing zinc by electrowinning in alkaline solution |
title_full_unstemmed |
Production of ultrafine zinc powder from wastes containing zinc by electrowinning in alkaline solution |
title_sort |
Production of ultrafine zinc powder from wastes containing zinc by electrowinning in alkaline solution |
author |
Youcai,Zhao |
author_facet |
Youcai,Zhao Qiang,Li Chenglong,Zhang Jiachao,Jiang |
author_role |
author |
author2 |
Qiang,Li Chenglong,Zhang Jiachao,Jiang |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Youcai,Zhao Qiang,Li Chenglong,Zhang Jiachao,Jiang |
dc.subject.por.fl_str_mv |
Electrolysis Ultrafine Alkaline medium Lead |
topic |
Electrolysis Ultrafine Alkaline medium Lead |
description |
Production of ultrafine zinc powder from industrial wastes by electrowinning in alkaline solution was studied. Stainless steel and magnesium electrodes were used as anode and cathode, respectively. Morphology, size distribution and composition of the Zn particles were characterized by Scanning Electron Microscopy, Laser Particle Size Analyzer, and Inductive Coupled Plasma Emission Spectrometer. The required composition of the electrolyte for ultrafine particles was found to be 25-35 g/L Zn, 200-220 g/L NaOH and 20-40 mg/L Pb. The optimal conditions were a current density of 1000-1200 A/m² and an electrolyte temperature of 30-40 °C. The results indicated that the lead additive exerted a beneficial effect on the refining of the particles, by increasing the cathodic polarization. Through this study, ultrafine zinc powder with a size distribution of around 10 μm could be produced, and considerably high current efficiencies (97-99 %) were obtained. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-12-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322013000400017 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322013000400017 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0104-66322013000400017 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Brazilian Society of Chemical Engineering |
publisher.none.fl_str_mv |
Brazilian Society of Chemical Engineering |
dc.source.none.fl_str_mv |
Brazilian Journal of Chemical Engineering v.30 n.4 2013 reponame:Brazilian Journal of Chemical Engineering instname:Associação Brasileira de Engenharia Química (ABEQ) instacron:ABEQ |
instname_str |
Associação Brasileira de Engenharia Química (ABEQ) |
instacron_str |
ABEQ |
institution |
ABEQ |
reponame_str |
Brazilian Journal of Chemical Engineering |
collection |
Brazilian Journal of Chemical Engineering |
repository.name.fl_str_mv |
Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ) |
repository.mail.fl_str_mv |
rgiudici@usp.br||rgiudici@usp.br |
_version_ |
1754213174232481792 |