Clay nanoparticles effects on performance and morphology of poly(vinylidene fluoride) membranes
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Brazilian Journal of Chemical Engineering |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322014000100009 |
Resumo: | In this study, a comparison between neat poly(vinylidene fluoride) (PVDF) membrane and composite (PVDF-Nanoclay and PVDF-PVP-Nanoclay) membranes is presented. All membranes were synthesized by the phase inversion process, using 18% PVDF, n-methylpyrrolidone as solvent and water as the non-solvent. Demineralized water cross-flow permeation tests were conducted to evaluate the membranes performance. Scanning electron microscopy (SEM) images of the membranes surface and cross-section and water contact angle measurements were used to estimate additives effects on membranes morphology. The results indicate that dopant addition affected membrane permeate flux and morphology. The 4% nanoclay composite membrane resulted in the highest ultrapure water permeability (0.9130 m³.m-2.h-1.MPa-1), lower hydraulic resistance (3.27´10+12.m-1), lower contact angle (87.1º) and highest surface porosity (0.95%). Furthermore, it was verified that the membrane surface porosity increased with increasing clay nanoparticles concentrations. It was observed that the morphology of the membranes with clay nanoparticle addition is characterized by a thin surface layer, with macro-pores, a thin bottom layer, which has a sponge-like structure with micro-pores and a thick intermediate layer, with finger-like pores and macro-pores. It was also verified that the introduction of PVP promotes a denser morphology compared with membranes without it. Based on the SEM surface and cross-sectional images and permeability tests, it became evident that the internal pore morphology plays an important role in membrane performance, because the higher the frequency and extent of the finger-like pores in the intermediate layer the higher is the membrane permeability. These preliminary results indicated that the use of nanoclay as an additive for membrane casting is a promising procedure for improving membrane performance for water and wastewater treatment. |
id |
ABEQ-1_ba978e6f70e668e1d5bdfcecb0c9c1a8 |
---|---|
oai_identifier_str |
oai:scielo:S0104-66322014000100009 |
network_acronym_str |
ABEQ-1 |
network_name_str |
Brazilian Journal of Chemical Engineering |
repository_id_str |
|
spelling |
Clay nanoparticles effects on performance and morphology of poly(vinylidene fluoride) membranesUltrafiltrationClay NanoparticlesPoly(vinylidene fluoride)Water TreatmentPerformanceMorphologyIn this study, a comparison between neat poly(vinylidene fluoride) (PVDF) membrane and composite (PVDF-Nanoclay and PVDF-PVP-Nanoclay) membranes is presented. All membranes were synthesized by the phase inversion process, using 18% PVDF, n-methylpyrrolidone as solvent and water as the non-solvent. Demineralized water cross-flow permeation tests were conducted to evaluate the membranes performance. Scanning electron microscopy (SEM) images of the membranes surface and cross-section and water contact angle measurements were used to estimate additives effects on membranes morphology. The results indicate that dopant addition affected membrane permeate flux and morphology. The 4% nanoclay composite membrane resulted in the highest ultrapure water permeability (0.9130 m³.m-2.h-1.MPa-1), lower hydraulic resistance (3.27´10+12.m-1), lower contact angle (87.1º) and highest surface porosity (0.95%). Furthermore, it was verified that the membrane surface porosity increased with increasing clay nanoparticles concentrations. It was observed that the morphology of the membranes with clay nanoparticle addition is characterized by a thin surface layer, with macro-pores, a thin bottom layer, which has a sponge-like structure with micro-pores and a thick intermediate layer, with finger-like pores and macro-pores. It was also verified that the introduction of PVP promotes a denser morphology compared with membranes without it. Based on the SEM surface and cross-sectional images and permeability tests, it became evident that the internal pore morphology plays an important role in membrane performance, because the higher the frequency and extent of the finger-like pores in the intermediate layer the higher is the membrane permeability. These preliminary results indicated that the use of nanoclay as an additive for membrane casting is a promising procedure for improving membrane performance for water and wastewater treatment.Brazilian Society of Chemical Engineering2014-03-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322014000100009Brazilian Journal of Chemical Engineering v.31 n.1 2014reponame:Brazilian Journal of Chemical Engineeringinstname:Associação Brasileira de Engenharia Química (ABEQ)instacron:ABEQ10.1590/S0104-66322014000100009info:eu-repo/semantics/openAccessMorihama,A. C. D.Mierzwa,J. C.eng2014-03-20T00:00:00Zoai:scielo:S0104-66322014000100009Revistahttps://www.scielo.br/j/bjce/https://old.scielo.br/oai/scielo-oai.phprgiudici@usp.br||rgiudici@usp.br1678-43830104-6632opendoar:2014-03-20T00:00Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ)false |
dc.title.none.fl_str_mv |
Clay nanoparticles effects on performance and morphology of poly(vinylidene fluoride) membranes |
title |
Clay nanoparticles effects on performance and morphology of poly(vinylidene fluoride) membranes |
spellingShingle |
Clay nanoparticles effects on performance and morphology of poly(vinylidene fluoride) membranes Morihama,A. C. D. Ultrafiltration Clay Nanoparticles Poly(vinylidene fluoride) Water Treatment Performance Morphology |
title_short |
Clay nanoparticles effects on performance and morphology of poly(vinylidene fluoride) membranes |
title_full |
Clay nanoparticles effects on performance and morphology of poly(vinylidene fluoride) membranes |
title_fullStr |
Clay nanoparticles effects on performance and morphology of poly(vinylidene fluoride) membranes |
title_full_unstemmed |
Clay nanoparticles effects on performance and morphology of poly(vinylidene fluoride) membranes |
title_sort |
Clay nanoparticles effects on performance and morphology of poly(vinylidene fluoride) membranes |
author |
Morihama,A. C. D. |
author_facet |
Morihama,A. C. D. Mierzwa,J. C. |
author_role |
author |
author2 |
Mierzwa,J. C. |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Morihama,A. C. D. Mierzwa,J. C. |
dc.subject.por.fl_str_mv |
Ultrafiltration Clay Nanoparticles Poly(vinylidene fluoride) Water Treatment Performance Morphology |
topic |
Ultrafiltration Clay Nanoparticles Poly(vinylidene fluoride) Water Treatment Performance Morphology |
description |
In this study, a comparison between neat poly(vinylidene fluoride) (PVDF) membrane and composite (PVDF-Nanoclay and PVDF-PVP-Nanoclay) membranes is presented. All membranes were synthesized by the phase inversion process, using 18% PVDF, n-methylpyrrolidone as solvent and water as the non-solvent. Demineralized water cross-flow permeation tests were conducted to evaluate the membranes performance. Scanning electron microscopy (SEM) images of the membranes surface and cross-section and water contact angle measurements were used to estimate additives effects on membranes morphology. The results indicate that dopant addition affected membrane permeate flux and morphology. The 4% nanoclay composite membrane resulted in the highest ultrapure water permeability (0.9130 m³.m-2.h-1.MPa-1), lower hydraulic resistance (3.27´10+12.m-1), lower contact angle (87.1º) and highest surface porosity (0.95%). Furthermore, it was verified that the membrane surface porosity increased with increasing clay nanoparticles concentrations. It was observed that the morphology of the membranes with clay nanoparticle addition is characterized by a thin surface layer, with macro-pores, a thin bottom layer, which has a sponge-like structure with micro-pores and a thick intermediate layer, with finger-like pores and macro-pores. It was also verified that the introduction of PVP promotes a denser morphology compared with membranes without it. Based on the SEM surface and cross-sectional images and permeability tests, it became evident that the internal pore morphology plays an important role in membrane performance, because the higher the frequency and extent of the finger-like pores in the intermediate layer the higher is the membrane permeability. These preliminary results indicated that the use of nanoclay as an additive for membrane casting is a promising procedure for improving membrane performance for water and wastewater treatment. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-03-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322014000100009 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322014000100009 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S0104-66322014000100009 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Brazilian Society of Chemical Engineering |
publisher.none.fl_str_mv |
Brazilian Society of Chemical Engineering |
dc.source.none.fl_str_mv |
Brazilian Journal of Chemical Engineering v.31 n.1 2014 reponame:Brazilian Journal of Chemical Engineering instname:Associação Brasileira de Engenharia Química (ABEQ) instacron:ABEQ |
instname_str |
Associação Brasileira de Engenharia Química (ABEQ) |
instacron_str |
ABEQ |
institution |
ABEQ |
reponame_str |
Brazilian Journal of Chemical Engineering |
collection |
Brazilian Journal of Chemical Engineering |
repository.name.fl_str_mv |
Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ) |
repository.mail.fl_str_mv |
rgiudici@usp.br||rgiudici@usp.br |
_version_ |
1754213174256599040 |