LIQUID-LIQUID EQUILIBRIUM OF SYSTEMS COMPOSED OF SOYBEAN OIL + MONOACYLGLYCEROLS + DIACYLGLYCEROLS + ETHYL OLEATE + OLEIC ACID + ETHANOL AT 303.15 AND 318.15 K

Detalhes bibliográficos
Autor(a) principal: Bessa,Larissa C. B. A.
Data de Publicação: 2018
Outros Autores: Batista,Eduardo A. C., Meirelles,Antonio J. A.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Brazilian Journal of Chemical Engineering
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322018000200373
Resumo: Abstract Steady increase in prices of petroleum-based fuels and growing environmental concerns are boosting attention to alternative fuels. In this context, biodiesel has drawn attention as an alternative fuel, especially as a substitute to traditional diesel. Biodiesel is commonly produced from triacylglycerols and alcohol through transesterification reaction. Knowledge of equilibrium phase distribution of key components in transesterification systems is essential for a better understanding of the reaction pathway and for guiding the design and optimization of reactors and the products separation. This study reports experimental results and thermodynamic modeling of the liquid-liquid equilibrium of systems composed of soybean oil + monoacylglycerols + diacylglycerols + ethyl oleate + oleic acid + ethanol at 303.15 and 318.15 K. Experimental data were well correlated using NRTL, with a maximum deviation of 0.688%. As for UNIFAC, the deviations between predicted and experimental data ranged from 3.13 to 9.21%.
id ABEQ-1_e2df7ff8b45b2d707a26bf9dba54cb82
oai_identifier_str oai:scielo:S0104-66322018000200373
network_acronym_str ABEQ-1
network_name_str Brazilian Journal of Chemical Engineering
repository_id_str
spelling LIQUID-LIQUID EQUILIBRIUM OF SYSTEMS COMPOSED OF SOYBEAN OIL + MONOACYLGLYCEROLS + DIACYLGLYCEROLS + ETHYL OLEATE + OLEIC ACID + ETHANOL AT 303.15 AND 318.15 Kpartial acylglycerolsbiodieselethanolmodelingAbstract Steady increase in prices of petroleum-based fuels and growing environmental concerns are boosting attention to alternative fuels. In this context, biodiesel has drawn attention as an alternative fuel, especially as a substitute to traditional diesel. Biodiesel is commonly produced from triacylglycerols and alcohol through transesterification reaction. Knowledge of equilibrium phase distribution of key components in transesterification systems is essential for a better understanding of the reaction pathway and for guiding the design and optimization of reactors and the products separation. This study reports experimental results and thermodynamic modeling of the liquid-liquid equilibrium of systems composed of soybean oil + monoacylglycerols + diacylglycerols + ethyl oleate + oleic acid + ethanol at 303.15 and 318.15 K. Experimental data were well correlated using NRTL, with a maximum deviation of 0.688%. As for UNIFAC, the deviations between predicted and experimental data ranged from 3.13 to 9.21%.Brazilian Society of Chemical Engineering2018-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322018000200373Brazilian Journal of Chemical Engineering v.35 n.2 2018reponame:Brazilian Journal of Chemical Engineeringinstname:Associação Brasileira de Engenharia Química (ABEQ)instacron:ABEQ10.1590/0104-6632.20180352s20160271info:eu-repo/semantics/openAccessBessa,Larissa C. B. A.Batista,Eduardo A. C.Meirelles,Antonio J. A.eng2018-09-17T00:00:00Zoai:scielo:S0104-66322018000200373Revistahttps://www.scielo.br/j/bjce/https://old.scielo.br/oai/scielo-oai.phprgiudici@usp.br||rgiudici@usp.br1678-43830104-6632opendoar:2018-09-17T00:00Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ)false
dc.title.none.fl_str_mv LIQUID-LIQUID EQUILIBRIUM OF SYSTEMS COMPOSED OF SOYBEAN OIL + MONOACYLGLYCEROLS + DIACYLGLYCEROLS + ETHYL OLEATE + OLEIC ACID + ETHANOL AT 303.15 AND 318.15 K
title LIQUID-LIQUID EQUILIBRIUM OF SYSTEMS COMPOSED OF SOYBEAN OIL + MONOACYLGLYCEROLS + DIACYLGLYCEROLS + ETHYL OLEATE + OLEIC ACID + ETHANOL AT 303.15 AND 318.15 K
spellingShingle LIQUID-LIQUID EQUILIBRIUM OF SYSTEMS COMPOSED OF SOYBEAN OIL + MONOACYLGLYCEROLS + DIACYLGLYCEROLS + ETHYL OLEATE + OLEIC ACID + ETHANOL AT 303.15 AND 318.15 K
Bessa,Larissa C. B. A.
partial acylglycerols
biodiesel
ethanol
modeling
title_short LIQUID-LIQUID EQUILIBRIUM OF SYSTEMS COMPOSED OF SOYBEAN OIL + MONOACYLGLYCEROLS + DIACYLGLYCEROLS + ETHYL OLEATE + OLEIC ACID + ETHANOL AT 303.15 AND 318.15 K
title_full LIQUID-LIQUID EQUILIBRIUM OF SYSTEMS COMPOSED OF SOYBEAN OIL + MONOACYLGLYCEROLS + DIACYLGLYCEROLS + ETHYL OLEATE + OLEIC ACID + ETHANOL AT 303.15 AND 318.15 K
title_fullStr LIQUID-LIQUID EQUILIBRIUM OF SYSTEMS COMPOSED OF SOYBEAN OIL + MONOACYLGLYCEROLS + DIACYLGLYCEROLS + ETHYL OLEATE + OLEIC ACID + ETHANOL AT 303.15 AND 318.15 K
title_full_unstemmed LIQUID-LIQUID EQUILIBRIUM OF SYSTEMS COMPOSED OF SOYBEAN OIL + MONOACYLGLYCEROLS + DIACYLGLYCEROLS + ETHYL OLEATE + OLEIC ACID + ETHANOL AT 303.15 AND 318.15 K
title_sort LIQUID-LIQUID EQUILIBRIUM OF SYSTEMS COMPOSED OF SOYBEAN OIL + MONOACYLGLYCEROLS + DIACYLGLYCEROLS + ETHYL OLEATE + OLEIC ACID + ETHANOL AT 303.15 AND 318.15 K
author Bessa,Larissa C. B. A.
author_facet Bessa,Larissa C. B. A.
Batista,Eduardo A. C.
Meirelles,Antonio J. A.
author_role author
author2 Batista,Eduardo A. C.
Meirelles,Antonio J. A.
author2_role author
author
dc.contributor.author.fl_str_mv Bessa,Larissa C. B. A.
Batista,Eduardo A. C.
Meirelles,Antonio J. A.
dc.subject.por.fl_str_mv partial acylglycerols
biodiesel
ethanol
modeling
topic partial acylglycerols
biodiesel
ethanol
modeling
description Abstract Steady increase in prices of petroleum-based fuels and growing environmental concerns are boosting attention to alternative fuels. In this context, biodiesel has drawn attention as an alternative fuel, especially as a substitute to traditional diesel. Biodiesel is commonly produced from triacylglycerols and alcohol through transesterification reaction. Knowledge of equilibrium phase distribution of key components in transesterification systems is essential for a better understanding of the reaction pathway and for guiding the design and optimization of reactors and the products separation. This study reports experimental results and thermodynamic modeling of the liquid-liquid equilibrium of systems composed of soybean oil + monoacylglycerols + diacylglycerols + ethyl oleate + oleic acid + ethanol at 303.15 and 318.15 K. Experimental data were well correlated using NRTL, with a maximum deviation of 0.688%. As for UNIFAC, the deviations between predicted and experimental data ranged from 3.13 to 9.21%.
publishDate 2018
dc.date.none.fl_str_mv 2018-06-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322018000200373
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322018000200373
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/0104-6632.20180352s20160271
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Brazilian Society of Chemical Engineering
publisher.none.fl_str_mv Brazilian Society of Chemical Engineering
dc.source.none.fl_str_mv Brazilian Journal of Chemical Engineering v.35 n.2 2018
reponame:Brazilian Journal of Chemical Engineering
instname:Associação Brasileira de Engenharia Química (ABEQ)
instacron:ABEQ
instname_str Associação Brasileira de Engenharia Química (ABEQ)
instacron_str ABEQ
institution ABEQ
reponame_str Brazilian Journal of Chemical Engineering
collection Brazilian Journal of Chemical Engineering
repository.name.fl_str_mv Brazilian Journal of Chemical Engineering - Associação Brasileira de Engenharia Química (ABEQ)
repository.mail.fl_str_mv rgiudici@usp.br||rgiudici@usp.br
_version_ 1754213175892377600