A New Dynamic Powder Consolidation Technique Using Shock Waves
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Materials research (São Carlos. Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392017000800260 |
Resumo: | Techniques for shock consolidation of powders have been developed for different purposes, including the synthesis of diamond from carbon powder. In this work, a new device configuration for dynamic consolidation is proposed. It consists of three coaxial tubes, with a conical cover made of explosive at the top of the device. The inner tube contains the powder to be compacted. The second is accelerated towards the first in order to promote its collapse. The third confines the explosive. A conical cap at the top of the device triggers the explosive. For a preliminary evaluation, two types of explosives, TNT and Composition B, were used. Preliminary analytical results by the impedance matching method indicate that maximum pressures of 35.44 GPa and 48.16 GPa could be achieved using TNT and Composition B, respectively. Maximum temperatures around 1,600 K and 2,500 K for TNT and Composition B, respectively, are expected. These pressure and temperature values are adequate for transforming graphite into diamond. Preliminary Rietveld refinement indicated that nanodiamond is a fraction of approximately 54% of the detonation resulting powder. |
id |
ABMABCABPOL-1_04aa7e84134bfa9ee83ae3b2b87f36b0 |
---|---|
oai_identifier_str |
oai:scielo:S1516-14392017000800260 |
network_acronym_str |
ABMABCABPOL-1 |
network_name_str |
Materials research (São Carlos. Online) |
repository_id_str |
|
spelling |
A New Dynamic Powder Consolidation Technique Using Shock Wavesconsolidationdetonationsynthesisdynamic compressionTechniques for shock consolidation of powders have been developed for different purposes, including the synthesis of diamond from carbon powder. In this work, a new device configuration for dynamic consolidation is proposed. It consists of three coaxial tubes, with a conical cover made of explosive at the top of the device. The inner tube contains the powder to be compacted. The second is accelerated towards the first in order to promote its collapse. The third confines the explosive. A conical cap at the top of the device triggers the explosive. For a preliminary evaluation, two types of explosives, TNT and Composition B, were used. Preliminary analytical results by the impedance matching method indicate that maximum pressures of 35.44 GPa and 48.16 GPa could be achieved using TNT and Composition B, respectively. Maximum temperatures around 1,600 K and 2,500 K for TNT and Composition B, respectively, are expected. These pressure and temperature values are adequate for transforming graphite into diamond. Preliminary Rietveld refinement indicated that nanodiamond is a fraction of approximately 54% of the detonation resulting powder.ABM, ABC, ABPol2017-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392017000800260Materials Research v.20 suppl.2 2017reponame:Materials research (São Carlos. Online)instname:Universidade Federal de São Carlos (UFSCAR)instacron:ABM ABC ABPOL10.1590/1980-5373-mr-2016-1009info:eu-repo/semantics/openAccessSantos,Jheison Lopes dosMarçal,Rubens Lincoln Santana BlazuttiMonteiro,Sérgio NevesLouro,Luis Henrique Lemeeng2018-04-12T00:00:00Zoai:scielo:S1516-14392017000800260Revistahttp://www.scielo.br/mrPUBhttps://old.scielo.br/oai/scielo-oai.phpdedz@power.ufscar.br1980-53731516-1439opendoar:2018-04-12T00:00Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR)false |
dc.title.none.fl_str_mv |
A New Dynamic Powder Consolidation Technique Using Shock Waves |
title |
A New Dynamic Powder Consolidation Technique Using Shock Waves |
spellingShingle |
A New Dynamic Powder Consolidation Technique Using Shock Waves Santos,Jheison Lopes dos consolidation detonation synthesis dynamic compression |
title_short |
A New Dynamic Powder Consolidation Technique Using Shock Waves |
title_full |
A New Dynamic Powder Consolidation Technique Using Shock Waves |
title_fullStr |
A New Dynamic Powder Consolidation Technique Using Shock Waves |
title_full_unstemmed |
A New Dynamic Powder Consolidation Technique Using Shock Waves |
title_sort |
A New Dynamic Powder Consolidation Technique Using Shock Waves |
author |
Santos,Jheison Lopes dos |
author_facet |
Santos,Jheison Lopes dos Marçal,Rubens Lincoln Santana Blazutti Monteiro,Sérgio Neves Louro,Luis Henrique Leme |
author_role |
author |
author2 |
Marçal,Rubens Lincoln Santana Blazutti Monteiro,Sérgio Neves Louro,Luis Henrique Leme |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Santos,Jheison Lopes dos Marçal,Rubens Lincoln Santana Blazutti Monteiro,Sérgio Neves Louro,Luis Henrique Leme |
dc.subject.por.fl_str_mv |
consolidation detonation synthesis dynamic compression |
topic |
consolidation detonation synthesis dynamic compression |
description |
Techniques for shock consolidation of powders have been developed for different purposes, including the synthesis of diamond from carbon powder. In this work, a new device configuration for dynamic consolidation is proposed. It consists of three coaxial tubes, with a conical cover made of explosive at the top of the device. The inner tube contains the powder to be compacted. The second is accelerated towards the first in order to promote its collapse. The third confines the explosive. A conical cap at the top of the device triggers the explosive. For a preliminary evaluation, two types of explosives, TNT and Composition B, were used. Preliminary analytical results by the impedance matching method indicate that maximum pressures of 35.44 GPa and 48.16 GPa could be achieved using TNT and Composition B, respectively. Maximum temperatures around 1,600 K and 2,500 K for TNT and Composition B, respectively, are expected. These pressure and temperature values are adequate for transforming graphite into diamond. Preliminary Rietveld refinement indicated that nanodiamond is a fraction of approximately 54% of the detonation resulting powder. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392017000800260 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392017000800260 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/1980-5373-mr-2016-1009 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
ABM, ABC, ABPol |
publisher.none.fl_str_mv |
ABM, ABC, ABPol |
dc.source.none.fl_str_mv |
Materials Research v.20 suppl.2 2017 reponame:Materials research (São Carlos. Online) instname:Universidade Federal de São Carlos (UFSCAR) instacron:ABM ABC ABPOL |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
ABM ABC ABPOL |
institution |
ABM ABC ABPOL |
reponame_str |
Materials research (São Carlos. Online) |
collection |
Materials research (São Carlos. Online) |
repository.name.fl_str_mv |
Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
dedz@power.ufscar.br |
_version_ |
1754212671108939776 |