Modeling non-ideal velocity of detonation in rock blasting

Detalhes bibliográficos
Autor(a) principal: Couceiro,Paulo
Data de Publicação: 2020
Tipo de documento: Artigo
Idioma: eng
Título da fonte: REM - International Engineering Journal
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2448-167X2020000300371
Resumo: Abstract The performance of commercial explosives is an important subject in rock blast ing modeling and simulation. As a result of its non-ideal behavior, these explosives usu ally react below their ideal detonation velocity. In these cases, the multi-dimensional effects, heterogeneities and confinement conditions become important for properly quantifying the detonation state. In this sense, an engineering approach to model two-dimensional steady non-ideal detonations for cylindrical stick explosives is used to quantify the expected detonation velocity for given reaction rate parameters and con finement conditions. Founded on an ellipsoidal shock shape approach (ESSA), the pro posed model combines the quasi-one-dimensional theory for the axial solution with the unconfined sonic post-flow conditions at the edge of the explosive. A mechanistic confinement approach is coupled with the ESSA model to estimate the effect of the inert confiner on the detonation flow. Finally, the proposed model is used to estimate the expected detonation velocity of two typical commercial explosives in a number of different confinement conditions.
id FG-1_4c8f080caaaf5bdf9e11184abd1f2a00
oai_identifier_str oai:scielo:S2448-167X2020000300371
network_acronym_str FG-1
network_name_str REM - International Engineering Journal
repository_id_str
spelling Modeling non-ideal velocity of detonation in rock blastingnon-ideal detonationconfined detonationvelocity of detonationrock blastingAbstract The performance of commercial explosives is an important subject in rock blast ing modeling and simulation. As a result of its non-ideal behavior, these explosives usu ally react below their ideal detonation velocity. In these cases, the multi-dimensional effects, heterogeneities and confinement conditions become important for properly quantifying the detonation state. In this sense, an engineering approach to model two-dimensional steady non-ideal detonations for cylindrical stick explosives is used to quantify the expected detonation velocity for given reaction rate parameters and con finement conditions. Founded on an ellipsoidal shock shape approach (ESSA), the pro posed model combines the quasi-one-dimensional theory for the axial solution with the unconfined sonic post-flow conditions at the edge of the explosive. A mechanistic confinement approach is coupled with the ESSA model to estimate the effect of the inert confiner on the detonation flow. Finally, the proposed model is used to estimate the expected detonation velocity of two typical commercial explosives in a number of different confinement conditions.Fundação Gorceix2020-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2448-167X2020000300371REM - International Engineering Journal v.73 n.3 2020reponame:REM - International Engineering Journalinstname:Fundação Gorceix (FG)instacron:FG10.1590/0370-44672019730120info:eu-repo/semantics/openAccessCouceiro,Pauloeng2020-06-17T00:00:00Zoai:scielo:S2448-167X2020000300371Revistahttps://www.rem.com.br/?lang=pt-brPRIhttps://old.scielo.br/oai/scielo-oai.php||editor@rem.com.br2448-167X2448-167Xopendoar:2020-06-17T00:00REM - International Engineering Journal - Fundação Gorceix (FG)false
dc.title.none.fl_str_mv Modeling non-ideal velocity of detonation in rock blasting
title Modeling non-ideal velocity of detonation in rock blasting
spellingShingle Modeling non-ideal velocity of detonation in rock blasting
Couceiro,Paulo
non-ideal detonation
confined detonation
velocity of detonation
rock blasting
title_short Modeling non-ideal velocity of detonation in rock blasting
title_full Modeling non-ideal velocity of detonation in rock blasting
title_fullStr Modeling non-ideal velocity of detonation in rock blasting
title_full_unstemmed Modeling non-ideal velocity of detonation in rock blasting
title_sort Modeling non-ideal velocity of detonation in rock blasting
author Couceiro,Paulo
author_facet Couceiro,Paulo
author_role author
dc.contributor.author.fl_str_mv Couceiro,Paulo
dc.subject.por.fl_str_mv non-ideal detonation
confined detonation
velocity of detonation
rock blasting
topic non-ideal detonation
confined detonation
velocity of detonation
rock blasting
description Abstract The performance of commercial explosives is an important subject in rock blast ing modeling and simulation. As a result of its non-ideal behavior, these explosives usu ally react below their ideal detonation velocity. In these cases, the multi-dimensional effects, heterogeneities and confinement conditions become important for properly quantifying the detonation state. In this sense, an engineering approach to model two-dimensional steady non-ideal detonations for cylindrical stick explosives is used to quantify the expected detonation velocity for given reaction rate parameters and con finement conditions. Founded on an ellipsoidal shock shape approach (ESSA), the pro posed model combines the quasi-one-dimensional theory for the axial solution with the unconfined sonic post-flow conditions at the edge of the explosive. A mechanistic confinement approach is coupled with the ESSA model to estimate the effect of the inert confiner on the detonation flow. Finally, the proposed model is used to estimate the expected detonation velocity of two typical commercial explosives in a number of different confinement conditions.
publishDate 2020
dc.date.none.fl_str_mv 2020-09-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2448-167X2020000300371
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2448-167X2020000300371
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/0370-44672019730120
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Fundação Gorceix
publisher.none.fl_str_mv Fundação Gorceix
dc.source.none.fl_str_mv REM - International Engineering Journal v.73 n.3 2020
reponame:REM - International Engineering Journal
instname:Fundação Gorceix (FG)
instacron:FG
instname_str Fundação Gorceix (FG)
instacron_str FG
institution FG
reponame_str REM - International Engineering Journal
collection REM - International Engineering Journal
repository.name.fl_str_mv REM - International Engineering Journal - Fundação Gorceix (FG)
repository.mail.fl_str_mv ||editor@rem.com.br
_version_ 1754734691503570944