Modeling non-ideal velocity of detonation in rock blasting
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | REM - International Engineering Journal |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2448-167X2020000300371 |
Resumo: | Abstract The performance of commercial explosives is an important subject in rock blast ing modeling and simulation. As a result of its non-ideal behavior, these explosives usu ally react below their ideal detonation velocity. In these cases, the multi-dimensional effects, heterogeneities and confinement conditions become important for properly quantifying the detonation state. In this sense, an engineering approach to model two-dimensional steady non-ideal detonations for cylindrical stick explosives is used to quantify the expected detonation velocity for given reaction rate parameters and con finement conditions. Founded on an ellipsoidal shock shape approach (ESSA), the pro posed model combines the quasi-one-dimensional theory for the axial solution with the unconfined sonic post-flow conditions at the edge of the explosive. A mechanistic confinement approach is coupled with the ESSA model to estimate the effect of the inert confiner on the detonation flow. Finally, the proposed model is used to estimate the expected detonation velocity of two typical commercial explosives in a number of different confinement conditions. |
id |
FG-1_4c8f080caaaf5bdf9e11184abd1f2a00 |
---|---|
oai_identifier_str |
oai:scielo:S2448-167X2020000300371 |
network_acronym_str |
FG-1 |
network_name_str |
REM - International Engineering Journal |
repository_id_str |
|
spelling |
Modeling non-ideal velocity of detonation in rock blastingnon-ideal detonationconfined detonationvelocity of detonationrock blastingAbstract The performance of commercial explosives is an important subject in rock blast ing modeling and simulation. As a result of its non-ideal behavior, these explosives usu ally react below their ideal detonation velocity. In these cases, the multi-dimensional effects, heterogeneities and confinement conditions become important for properly quantifying the detonation state. In this sense, an engineering approach to model two-dimensional steady non-ideal detonations for cylindrical stick explosives is used to quantify the expected detonation velocity for given reaction rate parameters and con finement conditions. Founded on an ellipsoidal shock shape approach (ESSA), the pro posed model combines the quasi-one-dimensional theory for the axial solution with the unconfined sonic post-flow conditions at the edge of the explosive. A mechanistic confinement approach is coupled with the ESSA model to estimate the effect of the inert confiner on the detonation flow. Finally, the proposed model is used to estimate the expected detonation velocity of two typical commercial explosives in a number of different confinement conditions.Fundação Gorceix2020-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2448-167X2020000300371REM - International Engineering Journal v.73 n.3 2020reponame:REM - International Engineering Journalinstname:Fundação Gorceix (FG)instacron:FG10.1590/0370-44672019730120info:eu-repo/semantics/openAccessCouceiro,Pauloeng2020-06-17T00:00:00Zoai:scielo:S2448-167X2020000300371Revistahttps://www.rem.com.br/?lang=pt-brPRIhttps://old.scielo.br/oai/scielo-oai.php||editor@rem.com.br2448-167X2448-167Xopendoar:2020-06-17T00:00REM - International Engineering Journal - Fundação Gorceix (FG)false |
dc.title.none.fl_str_mv |
Modeling non-ideal velocity of detonation in rock blasting |
title |
Modeling non-ideal velocity of detonation in rock blasting |
spellingShingle |
Modeling non-ideal velocity of detonation in rock blasting Couceiro,Paulo non-ideal detonation confined detonation velocity of detonation rock blasting |
title_short |
Modeling non-ideal velocity of detonation in rock blasting |
title_full |
Modeling non-ideal velocity of detonation in rock blasting |
title_fullStr |
Modeling non-ideal velocity of detonation in rock blasting |
title_full_unstemmed |
Modeling non-ideal velocity of detonation in rock blasting |
title_sort |
Modeling non-ideal velocity of detonation in rock blasting |
author |
Couceiro,Paulo |
author_facet |
Couceiro,Paulo |
author_role |
author |
dc.contributor.author.fl_str_mv |
Couceiro,Paulo |
dc.subject.por.fl_str_mv |
non-ideal detonation confined detonation velocity of detonation rock blasting |
topic |
non-ideal detonation confined detonation velocity of detonation rock blasting |
description |
Abstract The performance of commercial explosives is an important subject in rock blast ing modeling and simulation. As a result of its non-ideal behavior, these explosives usu ally react below their ideal detonation velocity. In these cases, the multi-dimensional effects, heterogeneities and confinement conditions become important for properly quantifying the detonation state. In this sense, an engineering approach to model two-dimensional steady non-ideal detonations for cylindrical stick explosives is used to quantify the expected detonation velocity for given reaction rate parameters and con finement conditions. Founded on an ellipsoidal shock shape approach (ESSA), the pro posed model combines the quasi-one-dimensional theory for the axial solution with the unconfined sonic post-flow conditions at the edge of the explosive. A mechanistic confinement approach is coupled with the ESSA model to estimate the effect of the inert confiner on the detonation flow. Finally, the proposed model is used to estimate the expected detonation velocity of two typical commercial explosives in a number of different confinement conditions. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-09-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2448-167X2020000300371 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2448-167X2020000300371 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/0370-44672019730120 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Fundação Gorceix |
publisher.none.fl_str_mv |
Fundação Gorceix |
dc.source.none.fl_str_mv |
REM - International Engineering Journal v.73 n.3 2020 reponame:REM - International Engineering Journal instname:Fundação Gorceix (FG) instacron:FG |
instname_str |
Fundação Gorceix (FG) |
instacron_str |
FG |
institution |
FG |
reponame_str |
REM - International Engineering Journal |
collection |
REM - International Engineering Journal |
repository.name.fl_str_mv |
REM - International Engineering Journal - Fundação Gorceix (FG) |
repository.mail.fl_str_mv |
||editor@rem.com.br |
_version_ |
1754734691503570944 |