Infrared and chemical characterization of natural amethysts and prasiolites colored by irradiation
Autor(a) principal: | |
---|---|
Data de Publicação: | 2009 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Materials research (São Carlos. Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392009000300011 |
Resumo: | The infrared bands of amethyst and prasiolite samples from different origins were correlated to the trace elements contents. Amethysts have an iron content greater than 20 ppm and a low content of sodium and potassium. Prasiolites have an aluminum content greater than 120 ppm and a higher overall trace elements content, which accounts for a strong absorption between 3200 and 3600 cm-1. Colorless samples of quartz that become amethysts and prasiolites after irradiation have infrared spectra at room temperature with a broad band at 3441 cm-1 and a sharp band at 3595 cm-1. The broad band splits in several bands at low temperatures that are related to AlSi and FeSi. The color of amethysts and prasiolites are assigned to [AlSiO4/h+]º and [FeSiO4/h+]º centers formed by the exposure to ionizing irradiation and to the influence of lattice distortions due to the content of iron as a substitute for silicon and a high content of trace elements of large ionic radius like potassium. |
id |
ABMABCABPOL-1_1083e6f77762a6a658341c68c27358ec |
---|---|
oai_identifier_str |
oai:scielo:S1516-14392009000300011 |
network_acronym_str |
ABMABCABPOL-1 |
network_name_str |
Materials research (São Carlos. Online) |
repository_id_str |
|
spelling |
Infrared and chemical characterization of natural amethysts and prasiolites colored by irradiationamethystprasioliteinfrared spectrumirradiationtrace elementsThe infrared bands of amethyst and prasiolite samples from different origins were correlated to the trace elements contents. Amethysts have an iron content greater than 20 ppm and a low content of sodium and potassium. Prasiolites have an aluminum content greater than 120 ppm and a higher overall trace elements content, which accounts for a strong absorption between 3200 and 3600 cm-1. Colorless samples of quartz that become amethysts and prasiolites after irradiation have infrared spectra at room temperature with a broad band at 3441 cm-1 and a sharp band at 3595 cm-1. The broad band splits in several bands at low temperatures that are related to AlSi and FeSi. The color of amethysts and prasiolites are assigned to [AlSiO4/h+]º and [FeSiO4/h+]º centers formed by the exposure to ionizing irradiation and to the influence of lattice distortions due to the content of iron as a substitute for silicon and a high content of trace elements of large ionic radius like potassium.ABM, ABC, ABPol2009-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392009000300011Materials Research v.12 n.3 2009reponame:Materials research (São Carlos. Online)instname:Universidade Federal de São Carlos (UFSCAR)instacron:ABM ABC ABPOL10.1590/S1516-14392009000300011info:eu-repo/semantics/openAccessLameiras,Fernando SoaresNunes,Eduardo Henrique MartinsVasconcelos,Wander Luizeng2009-11-06T00:00:00Zoai:scielo:S1516-14392009000300011Revistahttp://www.scielo.br/mrPUBhttps://old.scielo.br/oai/scielo-oai.phpdedz@power.ufscar.br1980-53731516-1439opendoar:2009-11-06T00:00Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR)false |
dc.title.none.fl_str_mv |
Infrared and chemical characterization of natural amethysts and prasiolites colored by irradiation |
title |
Infrared and chemical characterization of natural amethysts and prasiolites colored by irradiation |
spellingShingle |
Infrared and chemical characterization of natural amethysts and prasiolites colored by irradiation Lameiras,Fernando Soares amethyst prasiolite infrared spectrum irradiation trace elements |
title_short |
Infrared and chemical characterization of natural amethysts and prasiolites colored by irradiation |
title_full |
Infrared and chemical characterization of natural amethysts and prasiolites colored by irradiation |
title_fullStr |
Infrared and chemical characterization of natural amethysts and prasiolites colored by irradiation |
title_full_unstemmed |
Infrared and chemical characterization of natural amethysts and prasiolites colored by irradiation |
title_sort |
Infrared and chemical characterization of natural amethysts and prasiolites colored by irradiation |
author |
Lameiras,Fernando Soares |
author_facet |
Lameiras,Fernando Soares Nunes,Eduardo Henrique Martins Vasconcelos,Wander Luiz |
author_role |
author |
author2 |
Nunes,Eduardo Henrique Martins Vasconcelos,Wander Luiz |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Lameiras,Fernando Soares Nunes,Eduardo Henrique Martins Vasconcelos,Wander Luiz |
dc.subject.por.fl_str_mv |
amethyst prasiolite infrared spectrum irradiation trace elements |
topic |
amethyst prasiolite infrared spectrum irradiation trace elements |
description |
The infrared bands of amethyst and prasiolite samples from different origins were correlated to the trace elements contents. Amethysts have an iron content greater than 20 ppm and a low content of sodium and potassium. Prasiolites have an aluminum content greater than 120 ppm and a higher overall trace elements content, which accounts for a strong absorption between 3200 and 3600 cm-1. Colorless samples of quartz that become amethysts and prasiolites after irradiation have infrared spectra at room temperature with a broad band at 3441 cm-1 and a sharp band at 3595 cm-1. The broad band splits in several bands at low temperatures that are related to AlSi and FeSi. The color of amethysts and prasiolites are assigned to [AlSiO4/h+]º and [FeSiO4/h+]º centers formed by the exposure to ionizing irradiation and to the influence of lattice distortions due to the content of iron as a substitute for silicon and a high content of trace elements of large ionic radius like potassium. |
publishDate |
2009 |
dc.date.none.fl_str_mv |
2009-09-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392009000300011 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392009000300011 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S1516-14392009000300011 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
ABM, ABC, ABPol |
publisher.none.fl_str_mv |
ABM, ABC, ABPol |
dc.source.none.fl_str_mv |
Materials Research v.12 n.3 2009 reponame:Materials research (São Carlos. Online) instname:Universidade Federal de São Carlos (UFSCAR) instacron:ABM ABC ABPOL |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
ABM ABC ABPOL |
institution |
ABM ABC ABPOL |
reponame_str |
Materials research (São Carlos. Online) |
collection |
Materials research (São Carlos. Online) |
repository.name.fl_str_mv |
Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
dedz@power.ufscar.br |
_version_ |
1754212659300925440 |