Modeling of asphalt-rubber rotational viscosity by statistical analysis and neural networks
Autor(a) principal: | |
---|---|
Data de Publicação: | 2007 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Materials research (São Carlos. Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392007000100015 |
Resumo: | It is of a great importance to know binders' viscosity in order to perform handling, mixing, application processes and asphalt mixes compaction in highway surfacing. This paper presents the results of viscosity measurement in asphalt-rubber binders prepared in laboratory. The binders were prepared varying the rubber content, rubber particle size, duration and temperature of mixture, all following a statistical design plan. The statistical analysis and artificial neural networks were used to create mathematical models for prediction of the binders viscosity. The comparison between experimental data and simulated results with the generated models showed best performance of the neural networks analysis in contrast to the statistic models. The results indicated that the rubber content and duration of mixture have major influence on the observed viscosity for the considered interval of parameters variation. |
id |
ABMABCABPOL-1_2d5d970e5dd4acdd764106b36fdc77d6 |
---|---|
oai_identifier_str |
oai:scielo:S1516-14392007000100015 |
network_acronym_str |
ABMABCABPOL-1 |
network_name_str |
Materials research (São Carlos. Online) |
repository_id_str |
|
spelling |
Modeling of asphalt-rubber rotational viscosity by statistical analysis and neural networksasphalt-rubberviscositymodelingartificial neural networkIt is of a great importance to know binders' viscosity in order to perform handling, mixing, application processes and asphalt mixes compaction in highway surfacing. This paper presents the results of viscosity measurement in asphalt-rubber binders prepared in laboratory. The binders were prepared varying the rubber content, rubber particle size, duration and temperature of mixture, all following a statistical design plan. The statistical analysis and artificial neural networks were used to create mathematical models for prediction of the binders viscosity. The comparison between experimental data and simulated results with the generated models showed best performance of the neural networks analysis in contrast to the statistic models. The results indicated that the rubber content and duration of mixture have major influence on the observed viscosity for the considered interval of parameters variation.ABM, ABC, ABPol2007-03-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392007000100015Materials Research v.10 n.1 2007reponame:Materials research (São Carlos. Online)instname:Universidade Federal de São Carlos (UFSCAR)instacron:ABM ABC ABPOL10.1590/S1516-14392007000100015info:eu-repo/semantics/openAccessSpecht,Luciano PivotoKhatchatourian,OlegBrito,Lélio Antônio TeixeiraCeratti,Jorge Augusto Pereiraeng2007-05-03T00:00:00Zoai:scielo:S1516-14392007000100015Revistahttp://www.scielo.br/mrPUBhttps://old.scielo.br/oai/scielo-oai.phpdedz@power.ufscar.br1980-53731516-1439opendoar:2007-05-03T00:00Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR)false |
dc.title.none.fl_str_mv |
Modeling of asphalt-rubber rotational viscosity by statistical analysis and neural networks |
title |
Modeling of asphalt-rubber rotational viscosity by statistical analysis and neural networks |
spellingShingle |
Modeling of asphalt-rubber rotational viscosity by statistical analysis and neural networks Specht,Luciano Pivoto asphalt-rubber viscosity modeling artificial neural network |
title_short |
Modeling of asphalt-rubber rotational viscosity by statistical analysis and neural networks |
title_full |
Modeling of asphalt-rubber rotational viscosity by statistical analysis and neural networks |
title_fullStr |
Modeling of asphalt-rubber rotational viscosity by statistical analysis and neural networks |
title_full_unstemmed |
Modeling of asphalt-rubber rotational viscosity by statistical analysis and neural networks |
title_sort |
Modeling of asphalt-rubber rotational viscosity by statistical analysis and neural networks |
author |
Specht,Luciano Pivoto |
author_facet |
Specht,Luciano Pivoto Khatchatourian,Oleg Brito,Lélio Antônio Teixeira Ceratti,Jorge Augusto Pereira |
author_role |
author |
author2 |
Khatchatourian,Oleg Brito,Lélio Antônio Teixeira Ceratti,Jorge Augusto Pereira |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Specht,Luciano Pivoto Khatchatourian,Oleg Brito,Lélio Antônio Teixeira Ceratti,Jorge Augusto Pereira |
dc.subject.por.fl_str_mv |
asphalt-rubber viscosity modeling artificial neural network |
topic |
asphalt-rubber viscosity modeling artificial neural network |
description |
It is of a great importance to know binders' viscosity in order to perform handling, mixing, application processes and asphalt mixes compaction in highway surfacing. This paper presents the results of viscosity measurement in asphalt-rubber binders prepared in laboratory. The binders were prepared varying the rubber content, rubber particle size, duration and temperature of mixture, all following a statistical design plan. The statistical analysis and artificial neural networks were used to create mathematical models for prediction of the binders viscosity. The comparison between experimental data and simulated results with the generated models showed best performance of the neural networks analysis in contrast to the statistic models. The results indicated that the rubber content and duration of mixture have major influence on the observed viscosity for the considered interval of parameters variation. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-03-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392007000100015 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392007000100015 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S1516-14392007000100015 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
ABM, ABC, ABPol |
publisher.none.fl_str_mv |
ABM, ABC, ABPol |
dc.source.none.fl_str_mv |
Materials Research v.10 n.1 2007 reponame:Materials research (São Carlos. Online) instname:Universidade Federal de São Carlos (UFSCAR) instacron:ABM ABC ABPOL |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
ABM ABC ABPOL |
institution |
ABM ABC ABPOL |
reponame_str |
Materials research (São Carlos. Online) |
collection |
Materials research (São Carlos. Online) |
repository.name.fl_str_mv |
Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
dedz@power.ufscar.br |
_version_ |
1754212658516590592 |