Modeling of asphalt-rubber rotational viscosity by statistical analysis and neural networks
Autor(a) principal: | |
---|---|
Data de Publicação: | 2007 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFRGS |
Texto Completo: | http://hdl.handle.net/10183/20542 |
Resumo: | It is of a great importance to know binders’ viscosity in order to perform handling, mixing, application processes and asphalt mixes compaction in highway surfacing. This paper presents the results of viscosity measurement in asphalt-rubber binders prepared in laboratory. The binders were prepared varying the rubber content, rubber particle size, duration and temperature of mixture, all following a statistical design plan. The statistical analysis and artificial neural networks were used to create mathematical models for prediction of the binders viscosity. The comparison between experimental data and simulated results with the generated models showed best performance of the neural networks analysis in contrast to the statistic models. The results indicated that the rubber content and duration of mixture have major influence on the observed viscosity for the considered interval of parameters variation. |
id |
UFRGS-2_94fe6d2abb8ca4889d142da6f92c0314 |
---|---|
oai_identifier_str |
oai:www.lume.ufrgs.br:10183/20542 |
network_acronym_str |
UFRGS-2 |
network_name_str |
Repositório Institucional da UFRGS |
repository_id_str |
|
spelling |
Specht, Luciano PivotoKhatchatourian, Oleg A.Brito, Lélio Antonio TeixeiraCeratti, Jorge Augusto Pereira2010-04-16T09:15:23Z20071516-1439http://hdl.handle.net/10183/20542000631597It is of a great importance to know binders’ viscosity in order to perform handling, mixing, application processes and asphalt mixes compaction in highway surfacing. This paper presents the results of viscosity measurement in asphalt-rubber binders prepared in laboratory. The binders were prepared varying the rubber content, rubber particle size, duration and temperature of mixture, all following a statistical design plan. The statistical analysis and artificial neural networks were used to create mathematical models for prediction of the binders viscosity. The comparison between experimental data and simulated results with the generated models showed best performance of the neural networks analysis in contrast to the statistic models. The results indicated that the rubber content and duration of mixture have major influence on the observed viscosity for the considered interval of parameters variation.application/pdfengMaterials research : ibero-american journal of materials. São Carlos, SP. vol. 10, no. 1 (Jan./Mar. 2007), p. 69-74PavimentaçãoBorrachaRedes neurais artificiaisAsphalt-rubberViscosityModelingArtificial neural networkModeling of asphalt-rubber rotational viscosity by statistical analysis and neural networksinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/otherinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000631597.pdf000631597.pdfTexto completo (inglês)application/pdf719487http://www.lume.ufrgs.br/bitstream/10183/20542/1/000631597.pdf301460ab9b208b2a80e1422811f7ccf2MD51TEXT000631597.pdf.txt000631597.pdf.txtExtracted Texttext/plain28924http://www.lume.ufrgs.br/bitstream/10183/20542/2/000631597.pdf.txtbe2f24b3bd461388821b18303c2ffe30MD52THUMBNAIL000631597.pdf.jpg000631597.pdf.jpgGenerated Thumbnailimage/jpeg1865http://www.lume.ufrgs.br/bitstream/10183/20542/3/000631597.pdf.jpg2a419eabe94dd5ae90d275ef20f18e92MD5310183/205422022-04-20 04:54:52.558846oai:www.lume.ufrgs.br:10183/20542Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2022-04-20T07:54:52Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false |
dc.title.pt_BR.fl_str_mv |
Modeling of asphalt-rubber rotational viscosity by statistical analysis and neural networks |
title |
Modeling of asphalt-rubber rotational viscosity by statistical analysis and neural networks |
spellingShingle |
Modeling of asphalt-rubber rotational viscosity by statistical analysis and neural networks Specht, Luciano Pivoto Pavimentação Borracha Redes neurais artificiais Asphalt-rubber Viscosity Modeling Artificial neural network |
title_short |
Modeling of asphalt-rubber rotational viscosity by statistical analysis and neural networks |
title_full |
Modeling of asphalt-rubber rotational viscosity by statistical analysis and neural networks |
title_fullStr |
Modeling of asphalt-rubber rotational viscosity by statistical analysis and neural networks |
title_full_unstemmed |
Modeling of asphalt-rubber rotational viscosity by statistical analysis and neural networks |
title_sort |
Modeling of asphalt-rubber rotational viscosity by statistical analysis and neural networks |
author |
Specht, Luciano Pivoto |
author_facet |
Specht, Luciano Pivoto Khatchatourian, Oleg A. Brito, Lélio Antonio Teixeira Ceratti, Jorge Augusto Pereira |
author_role |
author |
author2 |
Khatchatourian, Oleg A. Brito, Lélio Antonio Teixeira Ceratti, Jorge Augusto Pereira |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Specht, Luciano Pivoto Khatchatourian, Oleg A. Brito, Lélio Antonio Teixeira Ceratti, Jorge Augusto Pereira |
dc.subject.por.fl_str_mv |
Pavimentação Borracha Redes neurais artificiais |
topic |
Pavimentação Borracha Redes neurais artificiais Asphalt-rubber Viscosity Modeling Artificial neural network |
dc.subject.eng.fl_str_mv |
Asphalt-rubber Viscosity Modeling Artificial neural network |
description |
It is of a great importance to know binders’ viscosity in order to perform handling, mixing, application processes and asphalt mixes compaction in highway surfacing. This paper presents the results of viscosity measurement in asphalt-rubber binders prepared in laboratory. The binders were prepared varying the rubber content, rubber particle size, duration and temperature of mixture, all following a statistical design plan. The statistical analysis and artificial neural networks were used to create mathematical models for prediction of the binders viscosity. The comparison between experimental data and simulated results with the generated models showed best performance of the neural networks analysis in contrast to the statistic models. The results indicated that the rubber content and duration of mixture have major influence on the observed viscosity for the considered interval of parameters variation. |
publishDate |
2007 |
dc.date.issued.fl_str_mv |
2007 |
dc.date.accessioned.fl_str_mv |
2010-04-16T09:15:23Z |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/other |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10183/20542 |
dc.identifier.issn.pt_BR.fl_str_mv |
1516-1439 |
dc.identifier.nrb.pt_BR.fl_str_mv |
000631597 |
identifier_str_mv |
1516-1439 000631597 |
url |
http://hdl.handle.net/10183/20542 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.pt_BR.fl_str_mv |
Materials research : ibero-american journal of materials. São Carlos, SP. vol. 10, no. 1 (Jan./Mar. 2007), p. 69-74 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRGS instname:Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
instname_str |
Universidade Federal do Rio Grande do Sul (UFRGS) |
instacron_str |
UFRGS |
institution |
UFRGS |
reponame_str |
Repositório Institucional da UFRGS |
collection |
Repositório Institucional da UFRGS |
bitstream.url.fl_str_mv |
http://www.lume.ufrgs.br/bitstream/10183/20542/1/000631597.pdf http://www.lume.ufrgs.br/bitstream/10183/20542/2/000631597.pdf.txt http://www.lume.ufrgs.br/bitstream/10183/20542/3/000631597.pdf.jpg |
bitstream.checksum.fl_str_mv |
301460ab9b208b2a80e1422811f7ccf2 be2f24b3bd461388821b18303c2ffe30 2a419eabe94dd5ae90d275ef20f18e92 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS) |
repository.mail.fl_str_mv |
|
_version_ |
1815447403215454208 |