Modeling of asphalt-rubber rotational viscosity by statistical analysis and neural networks

Detalhes bibliográficos
Autor(a) principal: Specht, Luciano Pivoto
Data de Publicação: 2007
Outros Autores: Khatchatourian, Oleg A., Brito, Lélio Antonio Teixeira, Ceratti, Jorge Augusto Pereira
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFRGS
Texto Completo: http://hdl.handle.net/10183/20542
Resumo: It is of a great importance to know binders’ viscosity in order to perform handling, mixing, application processes and asphalt mixes compaction in highway surfacing. This paper presents the results of viscosity measurement in asphalt-rubber binders prepared in laboratory. The binders were prepared varying the rubber content, rubber particle size, duration and temperature of mixture, all following a statistical design plan. The statistical analysis and artificial neural networks were used to create mathematical models for prediction of the binders viscosity. The comparison between experimental data and simulated results with the generated models showed best performance of the neural networks analysis in contrast to the statistic models. The results indicated that the rubber content and duration of mixture have major influence on the observed viscosity for the considered interval of parameters variation.
id UFRGS-2_94fe6d2abb8ca4889d142da6f92c0314
oai_identifier_str oai:www.lume.ufrgs.br:10183/20542
network_acronym_str UFRGS-2
network_name_str Repositório Institucional da UFRGS
repository_id_str
spelling Specht, Luciano PivotoKhatchatourian, Oleg A.Brito, Lélio Antonio TeixeiraCeratti, Jorge Augusto Pereira2010-04-16T09:15:23Z20071516-1439http://hdl.handle.net/10183/20542000631597It is of a great importance to know binders’ viscosity in order to perform handling, mixing, application processes and asphalt mixes compaction in highway surfacing. This paper presents the results of viscosity measurement in asphalt-rubber binders prepared in laboratory. The binders were prepared varying the rubber content, rubber particle size, duration and temperature of mixture, all following a statistical design plan. The statistical analysis and artificial neural networks were used to create mathematical models for prediction of the binders viscosity. The comparison between experimental data and simulated results with the generated models showed best performance of the neural networks analysis in contrast to the statistic models. The results indicated that the rubber content and duration of mixture have major influence on the observed viscosity for the considered interval of parameters variation.application/pdfengMaterials research : ibero-american journal of materials. São Carlos, SP. vol. 10, no. 1 (Jan./Mar. 2007), p. 69-74PavimentaçãoBorrachaRedes neurais artificiaisAsphalt-rubberViscosityModelingArtificial neural networkModeling of asphalt-rubber rotational viscosity by statistical analysis and neural networksinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/otherinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000631597.pdf000631597.pdfTexto completo (inglês)application/pdf719487http://www.lume.ufrgs.br/bitstream/10183/20542/1/000631597.pdf301460ab9b208b2a80e1422811f7ccf2MD51TEXT000631597.pdf.txt000631597.pdf.txtExtracted Texttext/plain28924http://www.lume.ufrgs.br/bitstream/10183/20542/2/000631597.pdf.txtbe2f24b3bd461388821b18303c2ffe30MD52THUMBNAIL000631597.pdf.jpg000631597.pdf.jpgGenerated Thumbnailimage/jpeg1865http://www.lume.ufrgs.br/bitstream/10183/20542/3/000631597.pdf.jpg2a419eabe94dd5ae90d275ef20f18e92MD5310183/205422022-04-20 04:54:52.558846oai:www.lume.ufrgs.br:10183/20542Repositório de PublicaçõesPUBhttps://lume.ufrgs.br/oai/requestopendoar:2022-04-20T07:54:52Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Modeling of asphalt-rubber rotational viscosity by statistical analysis and neural networks
title Modeling of asphalt-rubber rotational viscosity by statistical analysis and neural networks
spellingShingle Modeling of asphalt-rubber rotational viscosity by statistical analysis and neural networks
Specht, Luciano Pivoto
Pavimentação
Borracha
Redes neurais artificiais
Asphalt-rubber
Viscosity
Modeling
Artificial neural network
title_short Modeling of asphalt-rubber rotational viscosity by statistical analysis and neural networks
title_full Modeling of asphalt-rubber rotational viscosity by statistical analysis and neural networks
title_fullStr Modeling of asphalt-rubber rotational viscosity by statistical analysis and neural networks
title_full_unstemmed Modeling of asphalt-rubber rotational viscosity by statistical analysis and neural networks
title_sort Modeling of asphalt-rubber rotational viscosity by statistical analysis and neural networks
author Specht, Luciano Pivoto
author_facet Specht, Luciano Pivoto
Khatchatourian, Oleg A.
Brito, Lélio Antonio Teixeira
Ceratti, Jorge Augusto Pereira
author_role author
author2 Khatchatourian, Oleg A.
Brito, Lélio Antonio Teixeira
Ceratti, Jorge Augusto Pereira
author2_role author
author
author
dc.contributor.author.fl_str_mv Specht, Luciano Pivoto
Khatchatourian, Oleg A.
Brito, Lélio Antonio Teixeira
Ceratti, Jorge Augusto Pereira
dc.subject.por.fl_str_mv Pavimentação
Borracha
Redes neurais artificiais
topic Pavimentação
Borracha
Redes neurais artificiais
Asphalt-rubber
Viscosity
Modeling
Artificial neural network
dc.subject.eng.fl_str_mv Asphalt-rubber
Viscosity
Modeling
Artificial neural network
description It is of a great importance to know binders’ viscosity in order to perform handling, mixing, application processes and asphalt mixes compaction in highway surfacing. This paper presents the results of viscosity measurement in asphalt-rubber binders prepared in laboratory. The binders were prepared varying the rubber content, rubber particle size, duration and temperature of mixture, all following a statistical design plan. The statistical analysis and artificial neural networks were used to create mathematical models for prediction of the binders viscosity. The comparison between experimental data and simulated results with the generated models showed best performance of the neural networks analysis in contrast to the statistic models. The results indicated that the rubber content and duration of mixture have major influence on the observed viscosity for the considered interval of parameters variation.
publishDate 2007
dc.date.issued.fl_str_mv 2007
dc.date.accessioned.fl_str_mv 2010-04-16T09:15:23Z
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/other
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/20542
dc.identifier.issn.pt_BR.fl_str_mv 1516-1439
dc.identifier.nrb.pt_BR.fl_str_mv 000631597
identifier_str_mv 1516-1439
000631597
url http://hdl.handle.net/10183/20542
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartof.pt_BR.fl_str_mv Materials research : ibero-american journal of materials. São Carlos, SP. vol. 10, no. 1 (Jan./Mar. 2007), p. 69-74
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Repositório Institucional da UFRGS
collection Repositório Institucional da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/20542/1/000631597.pdf
http://www.lume.ufrgs.br/bitstream/10183/20542/2/000631597.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/20542/3/000631597.pdf.jpg
bitstream.checksum.fl_str_mv 301460ab9b208b2a80e1422811f7ccf2
be2f24b3bd461388821b18303c2ffe30
2a419eabe94dd5ae90d275ef20f18e92
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv
_version_ 1815447403215454208