TiO2 Antireflection Coating Deposited by Electro-Beam Evaporation: Thin Film Thickness Effect on Weighted Reflectance and Surface Passivation of Silicon Solar Cells
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Materials research (São Carlos. Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392022000100373 |
Resumo: | Titanium dioxide was extensively used in solar cell industry and currently has been studied to produce passivated contacts in PERC/PERT and TOPCon solar cells. The aim of this paper was to analyze the impact of the thickness of TiO2 thin films deposited by electro-beam evaporation on the weighted reflectance and the surface passivation on silicon solar cells. Thin films with different thicknesses were deposited to produce PERT solar cells, varying from 50 to 90 nm. The surface passivation was enhanced as the thickness was increased. For instance, at 400 nm, the internal quantum efficiency increased from 71% to 76% when the thickness of the TiO2 was augmented from 50 nm to 90 nm. The lowest weighted reflectance was obtained in samples with 80 nm thick TiO2 films. Considering the compromise between antireflection properties and surface passivation, the highest efficiency solar cells were produced with 80 nm thick TiO2. |
id |
ABMABCABPOL-1_30d28e94ab45310471afbb5cb2eb51d9 |
---|---|
oai_identifier_str |
oai:scielo:S1516-14392022000100373 |
network_acronym_str |
ABMABCABPOL-1 |
network_name_str |
Materials research (São Carlos. Online) |
repository_id_str |
|
spelling |
TiO2 Antireflection Coating Deposited by Electro-Beam Evaporation: Thin Film Thickness Effect on Weighted Reflectance and Surface Passivation of Silicon Solar CellsSilicon solar cellstitanium dioxideantireflection coatingsurface passivationTitanium dioxide was extensively used in solar cell industry and currently has been studied to produce passivated contacts in PERC/PERT and TOPCon solar cells. The aim of this paper was to analyze the impact of the thickness of TiO2 thin films deposited by electro-beam evaporation on the weighted reflectance and the surface passivation on silicon solar cells. Thin films with different thicknesses were deposited to produce PERT solar cells, varying from 50 to 90 nm. The surface passivation was enhanced as the thickness was increased. For instance, at 400 nm, the internal quantum efficiency increased from 71% to 76% when the thickness of the TiO2 was augmented from 50 nm to 90 nm. The lowest weighted reflectance was obtained in samples with 80 nm thick TiO2 films. Considering the compromise between antireflection properties and surface passivation, the highest efficiency solar cells were produced with 80 nm thick TiO2.ABM, ABC, ABPol2022-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392022000100373Materials Research v.25 2022reponame:Materials research (São Carlos. Online)instname:Universidade Federal de São Carlos (UFSCAR)instacron:ABM ABC ABPOL10.1590/1980-5373-mr-2022-0245info:eu-repo/semantics/openAccessModel,José Cristiano MengueMoehlecke,AdrianoZanesco,IzeteLy,MoussaMarcondes,Tatiana Lisboaeng2022-10-18T00:00:00Zoai:scielo:S1516-14392022000100373Revistahttp://www.scielo.br/mrPUBhttps://old.scielo.br/oai/scielo-oai.phpdedz@power.ufscar.br1980-53731516-1439opendoar:2022-10-18T00:00Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR)false |
dc.title.none.fl_str_mv |
TiO2 Antireflection Coating Deposited by Electro-Beam Evaporation: Thin Film Thickness Effect on Weighted Reflectance and Surface Passivation of Silicon Solar Cells |
title |
TiO2 Antireflection Coating Deposited by Electro-Beam Evaporation: Thin Film Thickness Effect on Weighted Reflectance and Surface Passivation of Silicon Solar Cells |
spellingShingle |
TiO2 Antireflection Coating Deposited by Electro-Beam Evaporation: Thin Film Thickness Effect on Weighted Reflectance and Surface Passivation of Silicon Solar Cells Model,José Cristiano Mengue Silicon solar cells titanium dioxide antireflection coating surface passivation |
title_short |
TiO2 Antireflection Coating Deposited by Electro-Beam Evaporation: Thin Film Thickness Effect on Weighted Reflectance and Surface Passivation of Silicon Solar Cells |
title_full |
TiO2 Antireflection Coating Deposited by Electro-Beam Evaporation: Thin Film Thickness Effect on Weighted Reflectance and Surface Passivation of Silicon Solar Cells |
title_fullStr |
TiO2 Antireflection Coating Deposited by Electro-Beam Evaporation: Thin Film Thickness Effect on Weighted Reflectance and Surface Passivation of Silicon Solar Cells |
title_full_unstemmed |
TiO2 Antireflection Coating Deposited by Electro-Beam Evaporation: Thin Film Thickness Effect on Weighted Reflectance and Surface Passivation of Silicon Solar Cells |
title_sort |
TiO2 Antireflection Coating Deposited by Electro-Beam Evaporation: Thin Film Thickness Effect on Weighted Reflectance and Surface Passivation of Silicon Solar Cells |
author |
Model,José Cristiano Mengue |
author_facet |
Model,José Cristiano Mengue Moehlecke,Adriano Zanesco,Izete Ly,Moussa Marcondes,Tatiana Lisboa |
author_role |
author |
author2 |
Moehlecke,Adriano Zanesco,Izete Ly,Moussa Marcondes,Tatiana Lisboa |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Model,José Cristiano Mengue Moehlecke,Adriano Zanesco,Izete Ly,Moussa Marcondes,Tatiana Lisboa |
dc.subject.por.fl_str_mv |
Silicon solar cells titanium dioxide antireflection coating surface passivation |
topic |
Silicon solar cells titanium dioxide antireflection coating surface passivation |
description |
Titanium dioxide was extensively used in solar cell industry and currently has been studied to produce passivated contacts in PERC/PERT and TOPCon solar cells. The aim of this paper was to analyze the impact of the thickness of TiO2 thin films deposited by electro-beam evaporation on the weighted reflectance and the surface passivation on silicon solar cells. Thin films with different thicknesses were deposited to produce PERT solar cells, varying from 50 to 90 nm. The surface passivation was enhanced as the thickness was increased. For instance, at 400 nm, the internal quantum efficiency increased from 71% to 76% when the thickness of the TiO2 was augmented from 50 nm to 90 nm. The lowest weighted reflectance was obtained in samples with 80 nm thick TiO2 films. Considering the compromise between antireflection properties and surface passivation, the highest efficiency solar cells were produced with 80 nm thick TiO2. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392022000100373 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392022000100373 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/1980-5373-mr-2022-0245 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
ABM, ABC, ABPol |
publisher.none.fl_str_mv |
ABM, ABC, ABPol |
dc.source.none.fl_str_mv |
Materials Research v.25 2022 reponame:Materials research (São Carlos. Online) instname:Universidade Federal de São Carlos (UFSCAR) instacron:ABM ABC ABPOL |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
ABM ABC ABPOL |
institution |
ABM ABC ABPOL |
reponame_str |
Materials research (São Carlos. Online) |
collection |
Materials research (São Carlos. Online) |
repository.name.fl_str_mv |
Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
dedz@power.ufscar.br |
_version_ |
1754212681613574144 |