Effect of sterilization on the properties of CDHA-OCP-beta-TCP biomaterial
Autor(a) principal: | |
---|---|
Data de Publicação: | 2007 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Materials research (São Carlos. Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392007000100005 |
Resumo: | The effect of the method of sterilization on the physical, chemical and mechanical properties of a new bone repairing material was studied. The material was obtained by thermal hydrolysis of beta-tricalcium phosphate/orthophosphoric acid cement and was composed of calcium deficient hydroxyapatite, octacalcium phosphate (OCP), and beta-tricalcium phosphate. Partial decomposition of the OCP was observed after sterilization for the three methods. Decomposition increased to the following sequence of sterilization methods: ethylene oxide; autoclaving; dry oven. On the other hand, mechanical strength decreased with regard to non sterilized material in the sterilization sequence: ethylene oxide; dry oven; autoclaving. The compressive strength was 8.5 ± 1.0; 9.0 ± 1.2; 8.2 ± 0.8 and 6.5 ± 1.0 MPa, whereas diametral tensile strength was 2.1 ± 0.3; 2.5 ± 0.1; 1.9 ± 0.9 and 1.6 ± 0.3 for the material sterilized by ethylene oxide, dry oven, and autoclaving, respectively. Several compositional and microstuctural changes were detected after dry heat and autoclave sterilization. Ethylene oxide sterilization had lesser effect on the chemical composition and strength than dry heat and autoclaving. |
id |
ABMABCABPOL-1_392b26b73bb4f18f653d9c5c8d0bccb5 |
---|---|
oai_identifier_str |
oai:scielo:S1516-14392007000100005 |
network_acronym_str |
ABMABCABPOL-1 |
network_name_str |
Materials research (São Carlos. Online) |
repository_id_str |
|
spelling |
Effect of sterilization on the properties of CDHA-OCP-beta-TCP biomaterialoctacalcium phosphatecalcium-deficient hydroxiapatitetricalcium phosphatesterilizationThe effect of the method of sterilization on the physical, chemical and mechanical properties of a new bone repairing material was studied. The material was obtained by thermal hydrolysis of beta-tricalcium phosphate/orthophosphoric acid cement and was composed of calcium deficient hydroxyapatite, octacalcium phosphate (OCP), and beta-tricalcium phosphate. Partial decomposition of the OCP was observed after sterilization for the three methods. Decomposition increased to the following sequence of sterilization methods: ethylene oxide; autoclaving; dry oven. On the other hand, mechanical strength decreased with regard to non sterilized material in the sterilization sequence: ethylene oxide; dry oven; autoclaving. The compressive strength was 8.5 ± 1.0; 9.0 ± 1.2; 8.2 ± 0.8 and 6.5 ± 1.0 MPa, whereas diametral tensile strength was 2.1 ± 0.3; 2.5 ± 0.1; 1.9 ± 0.9 and 1.6 ± 0.3 for the material sterilized by ethylene oxide, dry oven, and autoclaving, respectively. Several compositional and microstuctural changes were detected after dry heat and autoclave sterilization. Ethylene oxide sterilization had lesser effect on the chemical composition and strength than dry heat and autoclaving.ABM, ABC, ABPol2007-03-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392007000100005Materials Research v.10 n.1 2007reponame:Materials research (São Carlos. Online)instname:Universidade Federal de São Carlos (UFSCAR)instacron:ABM ABC ABPOL10.1590/S1516-14392007000100005info:eu-repo/semantics/openAccessMorejón-Alonso,LoreleyCarrodeguas,Raúl GarcíaGarcía-Menocal,José Ángel DelgadoPérez,José Antonio AlonsoManent,Salvador Martínezeng2007-05-03T00:00:00Zoai:scielo:S1516-14392007000100005Revistahttp://www.scielo.br/mrPUBhttps://old.scielo.br/oai/scielo-oai.phpdedz@power.ufscar.br1980-53731516-1439opendoar:2007-05-03T00:00Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR)false |
dc.title.none.fl_str_mv |
Effect of sterilization on the properties of CDHA-OCP-beta-TCP biomaterial |
title |
Effect of sterilization on the properties of CDHA-OCP-beta-TCP biomaterial |
spellingShingle |
Effect of sterilization on the properties of CDHA-OCP-beta-TCP biomaterial Morejón-Alonso,Loreley octacalcium phosphate calcium-deficient hydroxiapatite tricalcium phosphate sterilization |
title_short |
Effect of sterilization on the properties of CDHA-OCP-beta-TCP biomaterial |
title_full |
Effect of sterilization on the properties of CDHA-OCP-beta-TCP biomaterial |
title_fullStr |
Effect of sterilization on the properties of CDHA-OCP-beta-TCP biomaterial |
title_full_unstemmed |
Effect of sterilization on the properties of CDHA-OCP-beta-TCP biomaterial |
title_sort |
Effect of sterilization on the properties of CDHA-OCP-beta-TCP biomaterial |
author |
Morejón-Alonso,Loreley |
author_facet |
Morejón-Alonso,Loreley Carrodeguas,Raúl García García-Menocal,José Ángel Delgado Pérez,José Antonio Alonso Manent,Salvador Martínez |
author_role |
author |
author2 |
Carrodeguas,Raúl García García-Menocal,José Ángel Delgado Pérez,José Antonio Alonso Manent,Salvador Martínez |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Morejón-Alonso,Loreley Carrodeguas,Raúl García García-Menocal,José Ángel Delgado Pérez,José Antonio Alonso Manent,Salvador Martínez |
dc.subject.por.fl_str_mv |
octacalcium phosphate calcium-deficient hydroxiapatite tricalcium phosphate sterilization |
topic |
octacalcium phosphate calcium-deficient hydroxiapatite tricalcium phosphate sterilization |
description |
The effect of the method of sterilization on the physical, chemical and mechanical properties of a new bone repairing material was studied. The material was obtained by thermal hydrolysis of beta-tricalcium phosphate/orthophosphoric acid cement and was composed of calcium deficient hydroxyapatite, octacalcium phosphate (OCP), and beta-tricalcium phosphate. Partial decomposition of the OCP was observed after sterilization for the three methods. Decomposition increased to the following sequence of sterilization methods: ethylene oxide; autoclaving; dry oven. On the other hand, mechanical strength decreased with regard to non sterilized material in the sterilization sequence: ethylene oxide; dry oven; autoclaving. The compressive strength was 8.5 ± 1.0; 9.0 ± 1.2; 8.2 ± 0.8 and 6.5 ± 1.0 MPa, whereas diametral tensile strength was 2.1 ± 0.3; 2.5 ± 0.1; 1.9 ± 0.9 and 1.6 ± 0.3 for the material sterilized by ethylene oxide, dry oven, and autoclaving, respectively. Several compositional and microstuctural changes were detected after dry heat and autoclave sterilization. Ethylene oxide sterilization had lesser effect on the chemical composition and strength than dry heat and autoclaving. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-03-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392007000100005 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392007000100005 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S1516-14392007000100005 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
ABM, ABC, ABPol |
publisher.none.fl_str_mv |
ABM, ABC, ABPol |
dc.source.none.fl_str_mv |
Materials Research v.10 n.1 2007 reponame:Materials research (São Carlos. Online) instname:Universidade Federal de São Carlos (UFSCAR) instacron:ABM ABC ABPOL |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
ABM ABC ABPOL |
institution |
ABM ABC ABPOL |
reponame_str |
Materials research (São Carlos. Online) |
collection |
Materials research (São Carlos. Online) |
repository.name.fl_str_mv |
Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
dedz@power.ufscar.br |
_version_ |
1754212658501910528 |