Synthesis and characterization of Fe3O4 nanoparticles with perspectives in biomedical applications
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Materials research (São Carlos. Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392014000300002 |
Resumo: | Nowadays the use of magnetic nanoparticles (MNP) in medical applications has exceeded expectations. In molecular imaging, MNP based on iron oxide coated with appropriated materials have several applications in vitro and in vivo studies. For applications in nanobiotechnology these MNP must present some characteristics such as size smaller than 100 nanometers, high magnetization values, among others. Therefore the MNP have physical and chemical properties that are specific to certain studies which must be characterized for quality control of the nanostructured material. This study presents the synthesis and characterization of MNP of magnetite (Fe3O4) dispersible in water with perspectives in a wide range of biomedical applications. The characterization of the colloidal suspension based on MNP stated that the average diameter is (12.6±0.2) nm determined by Transmission Electron Microscopy where the MNP have the crystalline phase of magnetite (Fe3O4) that was identified by Diffraction X-ray and confirmed by Mössbauer Spectroscopy. The blocking temperature of (89±1) K, Fe3O4 MNP property, was determined from magnetic measurements based on the Zero Field Cooled and Field Cooled methods. The hysteresis loops were measured at different temperatures below and above blocking temperature. The magnetometry determined that the MNP showed superparamagnetic behavior confirmed by ferromagnetic resonance. |
id |
ABMABCABPOL-1_5b4f3454ae7c16c178fef6a3f65e7059 |
---|---|
oai_identifier_str |
oai:scielo:S1516-14392014000300002 |
network_acronym_str |
ABMABCABPOL-1 |
network_name_str |
Materials research (São Carlos. Online) |
repository_id_str |
|
spelling |
Synthesis and characterization of Fe3O4 nanoparticles with perspectives in biomedical applicationsnanoparticlesiron oxidesynthesischaracterizationmagnetiteNowadays the use of magnetic nanoparticles (MNP) in medical applications has exceeded expectations. In molecular imaging, MNP based on iron oxide coated with appropriated materials have several applications in vitro and in vivo studies. For applications in nanobiotechnology these MNP must present some characteristics such as size smaller than 100 nanometers, high magnetization values, among others. Therefore the MNP have physical and chemical properties that are specific to certain studies which must be characterized for quality control of the nanostructured material. This study presents the synthesis and characterization of MNP of magnetite (Fe3O4) dispersible in water with perspectives in a wide range of biomedical applications. The characterization of the colloidal suspension based on MNP stated that the average diameter is (12.6±0.2) nm determined by Transmission Electron Microscopy where the MNP have the crystalline phase of magnetite (Fe3O4) that was identified by Diffraction X-ray and confirmed by Mössbauer Spectroscopy. The blocking temperature of (89±1) K, Fe3O4 MNP property, was determined from magnetic measurements based on the Zero Field Cooled and Field Cooled methods. The hysteresis loops were measured at different temperatures below and above blocking temperature. The magnetometry determined that the MNP showed superparamagnetic behavior confirmed by ferromagnetic resonance.ABM, ABC, ABPol2014-06-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392014000300002Materials Research v.17 n.3 2014reponame:Materials research (São Carlos. Online)instname:Universidade Federal de São Carlos (UFSCAR)instacron:ABM ABC ABPOL10.1590/S1516-14392014005000050info:eu-repo/semantics/openAccessMamani,Javier BustamanteGamarra,Lionel FernelBrito,Giancarlo Espósito de Souzaeng2014-06-18T00:00:00Zoai:scielo:S1516-14392014000300002Revistahttp://www.scielo.br/mrPUBhttps://old.scielo.br/oai/scielo-oai.phpdedz@power.ufscar.br1980-53731516-1439opendoar:2014-06-18T00:00Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR)false |
dc.title.none.fl_str_mv |
Synthesis and characterization of Fe3O4 nanoparticles with perspectives in biomedical applications |
title |
Synthesis and characterization of Fe3O4 nanoparticles with perspectives in biomedical applications |
spellingShingle |
Synthesis and characterization of Fe3O4 nanoparticles with perspectives in biomedical applications Mamani,Javier Bustamante nanoparticles iron oxide synthesis characterization magnetite |
title_short |
Synthesis and characterization of Fe3O4 nanoparticles with perspectives in biomedical applications |
title_full |
Synthesis and characterization of Fe3O4 nanoparticles with perspectives in biomedical applications |
title_fullStr |
Synthesis and characterization of Fe3O4 nanoparticles with perspectives in biomedical applications |
title_full_unstemmed |
Synthesis and characterization of Fe3O4 nanoparticles with perspectives in biomedical applications |
title_sort |
Synthesis and characterization of Fe3O4 nanoparticles with perspectives in biomedical applications |
author |
Mamani,Javier Bustamante |
author_facet |
Mamani,Javier Bustamante Gamarra,Lionel Fernel Brito,Giancarlo Espósito de Souza |
author_role |
author |
author2 |
Gamarra,Lionel Fernel Brito,Giancarlo Espósito de Souza |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Mamani,Javier Bustamante Gamarra,Lionel Fernel Brito,Giancarlo Espósito de Souza |
dc.subject.por.fl_str_mv |
nanoparticles iron oxide synthesis characterization magnetite |
topic |
nanoparticles iron oxide synthesis characterization magnetite |
description |
Nowadays the use of magnetic nanoparticles (MNP) in medical applications has exceeded expectations. In molecular imaging, MNP based on iron oxide coated with appropriated materials have several applications in vitro and in vivo studies. For applications in nanobiotechnology these MNP must present some characteristics such as size smaller than 100 nanometers, high magnetization values, among others. Therefore the MNP have physical and chemical properties that are specific to certain studies which must be characterized for quality control of the nanostructured material. This study presents the synthesis and characterization of MNP of magnetite (Fe3O4) dispersible in water with perspectives in a wide range of biomedical applications. The characterization of the colloidal suspension based on MNP stated that the average diameter is (12.6±0.2) nm determined by Transmission Electron Microscopy where the MNP have the crystalline phase of magnetite (Fe3O4) that was identified by Diffraction X-ray and confirmed by Mössbauer Spectroscopy. The blocking temperature of (89±1) K, Fe3O4 MNP property, was determined from magnetic measurements based on the Zero Field Cooled and Field Cooled methods. The hysteresis loops were measured at different temperatures below and above blocking temperature. The magnetometry determined that the MNP showed superparamagnetic behavior confirmed by ferromagnetic resonance. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-06-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392014000300002 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392014000300002 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S1516-14392014005000050 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
ABM, ABC, ABPol |
publisher.none.fl_str_mv |
ABM, ABC, ABPol |
dc.source.none.fl_str_mv |
Materials Research v.17 n.3 2014 reponame:Materials research (São Carlos. Online) instname:Universidade Federal de São Carlos (UFSCAR) instacron:ABM ABC ABPOL |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
ABM ABC ABPOL |
institution |
ABM ABC ABPOL |
reponame_str |
Materials research (São Carlos. Online) |
collection |
Materials research (São Carlos. Online) |
repository.name.fl_str_mv |
Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
dedz@power.ufscar.br |
_version_ |
1754212664960090112 |