Analysis of Secondary Refining Slag Parameters with Focus on Inclusion Cleanliness
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Materials research (São Carlos. Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392018000500227 |
Resumo: | Secondary refining slag samples with different chemical compositions (45-54 % CaO, 7-13 % Al2O3, 20-29 % SiO2, 9-16 % MgO, 0-5 % CaF2) were investigated to verify the influence of their effective viscosity on inclusion cleanliness of DIN 38MnS6 in a steelmaking plant. The steel samples were collected during the production process for analysis of inclusions. Using the commercial software FactSage 6.4, thermodynamic calculations were performed to determine the effective viscosity, solid fraction, liquid fraction and MgO saturation point of these slags at 1560ºC. The results showed that all the slags were saturated in MgO, revealing a better protection of the ladle refractory. The addition of 2 to 5 % of CaF2 reduced the effective viscosity values for the analyzed slags from 0.45 Pa∙s to 0.10 Pa∙s , in comparison to the slags without the addition of CaF2, with an effective viscosity of 0.40 Pa∙s, 0.27 Pa∙s and 0.22 Pa∙s, decreasing the level of non-metallic inclusions for some of the analysed heats. However, it was detected during the manufacturing process that high slag fluidity and re-oxidation events continue to be a challenge associated with reducing the level of non-metallic inclusions. |
id |
ABMABCABPOL-1_5f6781896a085c212d157081d5dd58b5 |
---|---|
oai_identifier_str |
oai:scielo:S1516-14392018000500227 |
network_acronym_str |
ABMABCABPOL-1 |
network_name_str |
Materials research (São Carlos. Online) |
repository_id_str |
|
spelling |
Analysis of Secondary Refining Slag Parameters with Focus on Inclusion Cleanlinessrefining slagsviscosityinclusionsclean steelssecondary metallurgySecondary refining slag samples with different chemical compositions (45-54 % CaO, 7-13 % Al2O3, 20-29 % SiO2, 9-16 % MgO, 0-5 % CaF2) were investigated to verify the influence of their effective viscosity on inclusion cleanliness of DIN 38MnS6 in a steelmaking plant. The steel samples were collected during the production process for analysis of inclusions. Using the commercial software FactSage 6.4, thermodynamic calculations were performed to determine the effective viscosity, solid fraction, liquid fraction and MgO saturation point of these slags at 1560ºC. The results showed that all the slags were saturated in MgO, revealing a better protection of the ladle refractory. The addition of 2 to 5 % of CaF2 reduced the effective viscosity values for the analyzed slags from 0.45 Pa∙s to 0.10 Pa∙s , in comparison to the slags without the addition of CaF2, with an effective viscosity of 0.40 Pa∙s, 0.27 Pa∙s and 0.22 Pa∙s, decreasing the level of non-metallic inclusions for some of the analysed heats. However, it was detected during the manufacturing process that high slag fluidity and re-oxidation events continue to be a challenge associated with reducing the level of non-metallic inclusions.ABM, ABC, ABPol2018-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392018000500227Materials Research v.21 n.5 2018reponame:Materials research (São Carlos. Online)instname:Universidade Federal de São Carlos (UFSCAR)instacron:ABM ABC ABPOL10.1590/1980-5373-mr-2018-0296info:eu-repo/semantics/openAccessPereira,Julio Aníbal MoralesRocha,Vinicius Cardoso daYoshioka,AyumiBielefeldt,Wagner VianaVilela,Antônio Cezar Fariaeng2018-07-30T00:00:00Zoai:scielo:S1516-14392018000500227Revistahttp://www.scielo.br/mrPUBhttps://old.scielo.br/oai/scielo-oai.phpdedz@power.ufscar.br1980-53731516-1439opendoar:2018-07-30T00:00Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR)false |
dc.title.none.fl_str_mv |
Analysis of Secondary Refining Slag Parameters with Focus on Inclusion Cleanliness |
title |
Analysis of Secondary Refining Slag Parameters with Focus on Inclusion Cleanliness |
spellingShingle |
Analysis of Secondary Refining Slag Parameters with Focus on Inclusion Cleanliness Pereira,Julio Aníbal Morales refining slags viscosity inclusions clean steels secondary metallurgy |
title_short |
Analysis of Secondary Refining Slag Parameters with Focus on Inclusion Cleanliness |
title_full |
Analysis of Secondary Refining Slag Parameters with Focus on Inclusion Cleanliness |
title_fullStr |
Analysis of Secondary Refining Slag Parameters with Focus on Inclusion Cleanliness |
title_full_unstemmed |
Analysis of Secondary Refining Slag Parameters with Focus on Inclusion Cleanliness |
title_sort |
Analysis of Secondary Refining Slag Parameters with Focus on Inclusion Cleanliness |
author |
Pereira,Julio Aníbal Morales |
author_facet |
Pereira,Julio Aníbal Morales Rocha,Vinicius Cardoso da Yoshioka,Ayumi Bielefeldt,Wagner Viana Vilela,Antônio Cezar Faria |
author_role |
author |
author2 |
Rocha,Vinicius Cardoso da Yoshioka,Ayumi Bielefeldt,Wagner Viana Vilela,Antônio Cezar Faria |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Pereira,Julio Aníbal Morales Rocha,Vinicius Cardoso da Yoshioka,Ayumi Bielefeldt,Wagner Viana Vilela,Antônio Cezar Faria |
dc.subject.por.fl_str_mv |
refining slags viscosity inclusions clean steels secondary metallurgy |
topic |
refining slags viscosity inclusions clean steels secondary metallurgy |
description |
Secondary refining slag samples with different chemical compositions (45-54 % CaO, 7-13 % Al2O3, 20-29 % SiO2, 9-16 % MgO, 0-5 % CaF2) were investigated to verify the influence of their effective viscosity on inclusion cleanliness of DIN 38MnS6 in a steelmaking plant. The steel samples were collected during the production process for analysis of inclusions. Using the commercial software FactSage 6.4, thermodynamic calculations were performed to determine the effective viscosity, solid fraction, liquid fraction and MgO saturation point of these slags at 1560ºC. The results showed that all the slags were saturated in MgO, revealing a better protection of the ladle refractory. The addition of 2 to 5 % of CaF2 reduced the effective viscosity values for the analyzed slags from 0.45 Pa∙s to 0.10 Pa∙s , in comparison to the slags without the addition of CaF2, with an effective viscosity of 0.40 Pa∙s, 0.27 Pa∙s and 0.22 Pa∙s, decreasing the level of non-metallic inclusions for some of the analysed heats. However, it was detected during the manufacturing process that high slag fluidity and re-oxidation events continue to be a challenge associated with reducing the level of non-metallic inclusions. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392018000500227 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392018000500227 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/1980-5373-mr-2018-0296 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
ABM, ABC, ABPol |
publisher.none.fl_str_mv |
ABM, ABC, ABPol |
dc.source.none.fl_str_mv |
Materials Research v.21 n.5 2018 reponame:Materials research (São Carlos. Online) instname:Universidade Federal de São Carlos (UFSCAR) instacron:ABM ABC ABPOL |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
ABM ABC ABPOL |
institution |
ABM ABC ABPOL |
reponame_str |
Materials research (São Carlos. Online) |
collection |
Materials research (São Carlos. Online) |
repository.name.fl_str_mv |
Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
dedz@power.ufscar.br |
_version_ |
1754212673201897472 |