Band Structure in Carbon Nanostructure Phononic Crystals
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Materials research (São Carlos. Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392017000800555 |
Resumo: | We investigate the band structure of elastic waves propagating in carbon nanostructure phononic crystals with square, rectangular, triangular, honeycomb and Kagomé lattices. We also study the influence of carbon nanostructure cross section geometry - circular, hollow circular, square and rotated square with a 45° angle of rotation with respect to the x and y axes. Plane wave expansion method is used to solve the governing equations of motion of a isotropic solid based on classical elasticity theory, ignoring nanoscopic size effects, considering two-dimensional periodicity and wave propagation in the xy plane. Complete band gaps between XY and Z modes are observed for all types of carbon nanostructures. The best performance is for nanophononic crystal with circular carbon nanostructures in a triangular lattice with high band gap width in a broad range of filling fraction. We suggest that carbon nanostructure phononic crystals are feasible for elastic vibration management in GHz. |
id |
ABMABCABPOL-1_9c9fd340a8b72dcc482c5d96fdbc12b0 |
---|---|
oai_identifier_str |
oai:scielo:S1516-14392017000800555 |
network_acronym_str |
ABMABCABPOL-1 |
network_name_str |
Materials research (São Carlos. Online) |
repository_id_str |
|
spelling |
Band Structure in Carbon Nanostructure Phononic Crystalscarbon nanostructure phononic crystalband structureplane wave expansion methodcomplete band gapsvibration controlWe investigate the band structure of elastic waves propagating in carbon nanostructure phononic crystals with square, rectangular, triangular, honeycomb and Kagomé lattices. We also study the influence of carbon nanostructure cross section geometry - circular, hollow circular, square and rotated square with a 45° angle of rotation with respect to the x and y axes. Plane wave expansion method is used to solve the governing equations of motion of a isotropic solid based on classical elasticity theory, ignoring nanoscopic size effects, considering two-dimensional periodicity and wave propagation in the xy plane. Complete band gaps between XY and Z modes are observed for all types of carbon nanostructures. The best performance is for nanophononic crystal with circular carbon nanostructures in a triangular lattice with high band gap width in a broad range of filling fraction. We suggest that carbon nanostructure phononic crystals are feasible for elastic vibration management in GHz.ABM, ABC, ABPol2017-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392017000800555Materials Research v.20 suppl.2 2017reponame:Materials research (São Carlos. Online)instname:Universidade Federal de São Carlos (UFSCAR)instacron:ABM ABC ABPOL10.1590/1980-5373-mr-2016-0898info:eu-repo/semantics/openAccessMiranda Júnior,Edson Jansen Pedrosa deSantos,José Maria Campos Doseng2018-04-12T00:00:00Zoai:scielo:S1516-14392017000800555Revistahttp://www.scielo.br/mrPUBhttps://old.scielo.br/oai/scielo-oai.phpdedz@power.ufscar.br1980-53731516-1439opendoar:2018-04-12T00:00Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR)false |
dc.title.none.fl_str_mv |
Band Structure in Carbon Nanostructure Phononic Crystals |
title |
Band Structure in Carbon Nanostructure Phononic Crystals |
spellingShingle |
Band Structure in Carbon Nanostructure Phononic Crystals Miranda Júnior,Edson Jansen Pedrosa de carbon nanostructure phononic crystal band structure plane wave expansion method complete band gaps vibration control |
title_short |
Band Structure in Carbon Nanostructure Phononic Crystals |
title_full |
Band Structure in Carbon Nanostructure Phononic Crystals |
title_fullStr |
Band Structure in Carbon Nanostructure Phononic Crystals |
title_full_unstemmed |
Band Structure in Carbon Nanostructure Phononic Crystals |
title_sort |
Band Structure in Carbon Nanostructure Phononic Crystals |
author |
Miranda Júnior,Edson Jansen Pedrosa de |
author_facet |
Miranda Júnior,Edson Jansen Pedrosa de Santos,José Maria Campos Dos |
author_role |
author |
author2 |
Santos,José Maria Campos Dos |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Miranda Júnior,Edson Jansen Pedrosa de Santos,José Maria Campos Dos |
dc.subject.por.fl_str_mv |
carbon nanostructure phononic crystal band structure plane wave expansion method complete band gaps vibration control |
topic |
carbon nanostructure phononic crystal band structure plane wave expansion method complete band gaps vibration control |
description |
We investigate the band structure of elastic waves propagating in carbon nanostructure phononic crystals with square, rectangular, triangular, honeycomb and Kagomé lattices. We also study the influence of carbon nanostructure cross section geometry - circular, hollow circular, square and rotated square with a 45° angle of rotation with respect to the x and y axes. Plane wave expansion method is used to solve the governing equations of motion of a isotropic solid based on classical elasticity theory, ignoring nanoscopic size effects, considering two-dimensional periodicity and wave propagation in the xy plane. Complete band gaps between XY and Z modes are observed for all types of carbon nanostructures. The best performance is for nanophononic crystal with circular carbon nanostructures in a triangular lattice with high band gap width in a broad range of filling fraction. We suggest that carbon nanostructure phononic crystals are feasible for elastic vibration management in GHz. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392017000800555 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392017000800555 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/1980-5373-mr-2016-0898 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
ABM, ABC, ABPol |
publisher.none.fl_str_mv |
ABM, ABC, ABPol |
dc.source.none.fl_str_mv |
Materials Research v.20 suppl.2 2017 reponame:Materials research (São Carlos. Online) instname:Universidade Federal de São Carlos (UFSCAR) instacron:ABM ABC ABPOL |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
ABM ABC ABPOL |
institution |
ABM ABC ABPOL |
reponame_str |
Materials research (São Carlos. Online) |
collection |
Materials research (São Carlos. Online) |
repository.name.fl_str_mv |
Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
dedz@power.ufscar.br |
_version_ |
1754212671964577792 |