Complete Band Gaps in Nano-Piezoelectric Phononic Crystals

Detalhes bibliográficos
Autor(a) principal: Miranda Jr.,Edson Jansen Pedrosa de
Data de Publicação: 2017
Outros Autores: Santos,José Maria Campos Dos
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Materials research (São Carlos. Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392017000700015
Resumo: We study the band structure of elastic waves propagating in a nano-piezoelectric phononic crystal consisting of a polymeric matrix reinforced by BaTiO3 inclusions in square, rectangular, triangular, honeycomb and Kagomé lattices. We also investigate the influence of inclusion cross section geometry - circular, hollow circular, square and rotated square with a 45º angle of rotation with respect to x and y axes. Plane wave expansion method is used to solve the governing equations of motion of a piezoelectric solid based on classical elasticity theory, ignoring nanoscopic size effects, considering two-dimensional periodicity and wave propagation in the xy plane. Complete band gaps between XY and Z modes are observed for all inclusions and the best performance is for circular inclusion in a triangular lattice. Piezoelectricity influences significantly the band gaps for hollow circular inclusion in lower frequencies. We suggest that nano-piezoelectric phononic crystals are feasible for elastic vibration management in GHz.
id ABMABCABPOL-1_df36700dd9fc93e3256b34384a892e00
oai_identifier_str oai:scielo:S1516-14392017000700015
network_acronym_str ABMABCABPOL-1
network_name_str Materials research (São Carlos. Online)
repository_id_str
spelling Complete Band Gaps in Nano-Piezoelectric Phononic Crystalsnano-piezoelectric phononic crystalband structureplane wave expansion methodcomplete band gapsvibration controlWe study the band structure of elastic waves propagating in a nano-piezoelectric phononic crystal consisting of a polymeric matrix reinforced by BaTiO3 inclusions in square, rectangular, triangular, honeycomb and Kagomé lattices. We also investigate the influence of inclusion cross section geometry - circular, hollow circular, square and rotated square with a 45º angle of rotation with respect to x and y axes. Plane wave expansion method is used to solve the governing equations of motion of a piezoelectric solid based on classical elasticity theory, ignoring nanoscopic size effects, considering two-dimensional periodicity and wave propagation in the xy plane. Complete band gaps between XY and Z modes are observed for all inclusions and the best performance is for circular inclusion in a triangular lattice. Piezoelectricity influences significantly the band gaps for hollow circular inclusion in lower frequencies. We suggest that nano-piezoelectric phononic crystals are feasible for elastic vibration management in GHz.ABM, ABC, ABPol2017-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392017000700015Materials Research v.20 suppl.1 2017reponame:Materials research (São Carlos. Online)instname:Universidade Federal de São Carlos (UFSCAR)instacron:ABM ABC ABPOL10.1590/1980-5373-mr-2017-0298info:eu-repo/semantics/openAccessMiranda Jr.,Edson Jansen Pedrosa deSantos,José Maria Campos Doseng2018-02-16T00:00:00Zoai:scielo:S1516-14392017000700015Revistahttp://www.scielo.br/mrPUBhttps://old.scielo.br/oai/scielo-oai.phpdedz@power.ufscar.br1980-53731516-1439opendoar:2018-02-16T00:00Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR)false
dc.title.none.fl_str_mv Complete Band Gaps in Nano-Piezoelectric Phononic Crystals
title Complete Band Gaps in Nano-Piezoelectric Phononic Crystals
spellingShingle Complete Band Gaps in Nano-Piezoelectric Phononic Crystals
Miranda Jr.,Edson Jansen Pedrosa de
nano-piezoelectric phononic crystal
band structure
plane wave expansion method
complete band gaps
vibration control
title_short Complete Band Gaps in Nano-Piezoelectric Phononic Crystals
title_full Complete Band Gaps in Nano-Piezoelectric Phononic Crystals
title_fullStr Complete Band Gaps in Nano-Piezoelectric Phononic Crystals
title_full_unstemmed Complete Band Gaps in Nano-Piezoelectric Phononic Crystals
title_sort Complete Band Gaps in Nano-Piezoelectric Phononic Crystals
author Miranda Jr.,Edson Jansen Pedrosa de
author_facet Miranda Jr.,Edson Jansen Pedrosa de
Santos,José Maria Campos Dos
author_role author
author2 Santos,José Maria Campos Dos
author2_role author
dc.contributor.author.fl_str_mv Miranda Jr.,Edson Jansen Pedrosa de
Santos,José Maria Campos Dos
dc.subject.por.fl_str_mv nano-piezoelectric phononic crystal
band structure
plane wave expansion method
complete band gaps
vibration control
topic nano-piezoelectric phononic crystal
band structure
plane wave expansion method
complete band gaps
vibration control
description We study the band structure of elastic waves propagating in a nano-piezoelectric phononic crystal consisting of a polymeric matrix reinforced by BaTiO3 inclusions in square, rectangular, triangular, honeycomb and Kagomé lattices. We also investigate the influence of inclusion cross section geometry - circular, hollow circular, square and rotated square with a 45º angle of rotation with respect to x and y axes. Plane wave expansion method is used to solve the governing equations of motion of a piezoelectric solid based on classical elasticity theory, ignoring nanoscopic size effects, considering two-dimensional periodicity and wave propagation in the xy plane. Complete band gaps between XY and Z modes are observed for all inclusions and the best performance is for circular inclusion in a triangular lattice. Piezoelectricity influences significantly the band gaps for hollow circular inclusion in lower frequencies. We suggest that nano-piezoelectric phononic crystals are feasible for elastic vibration management in GHz.
publishDate 2017
dc.date.none.fl_str_mv 2017-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392017000700015
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392017000700015
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/1980-5373-mr-2017-0298
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv ABM, ABC, ABPol
publisher.none.fl_str_mv ABM, ABC, ABPol
dc.source.none.fl_str_mv Materials Research v.20 suppl.1 2017
reponame:Materials research (São Carlos. Online)
instname:Universidade Federal de São Carlos (UFSCAR)
instacron:ABM ABC ABPOL
instname_str Universidade Federal de São Carlos (UFSCAR)
instacron_str ABM ABC ABPOL
institution ABM ABC ABPOL
reponame_str Materials research (São Carlos. Online)
collection Materials research (São Carlos. Online)
repository.name.fl_str_mv Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR)
repository.mail.fl_str_mv dedz@power.ufscar.br
_version_ 1754212671636373504