Complete Band Gaps in Nano-Piezoelectric Phononic Crystals
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Materials research (São Carlos. Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392017000700015 |
Resumo: | We study the band structure of elastic waves propagating in a nano-piezoelectric phononic crystal consisting of a polymeric matrix reinforced by BaTiO3 inclusions in square, rectangular, triangular, honeycomb and Kagomé lattices. We also investigate the influence of inclusion cross section geometry - circular, hollow circular, square and rotated square with a 45º angle of rotation with respect to x and y axes. Plane wave expansion method is used to solve the governing equations of motion of a piezoelectric solid based on classical elasticity theory, ignoring nanoscopic size effects, considering two-dimensional periodicity and wave propagation in the xy plane. Complete band gaps between XY and Z modes are observed for all inclusions and the best performance is for circular inclusion in a triangular lattice. Piezoelectricity influences significantly the band gaps for hollow circular inclusion in lower frequencies. We suggest that nano-piezoelectric phononic crystals are feasible for elastic vibration management in GHz. |
id |
ABMABCABPOL-1_df36700dd9fc93e3256b34384a892e00 |
---|---|
oai_identifier_str |
oai:scielo:S1516-14392017000700015 |
network_acronym_str |
ABMABCABPOL-1 |
network_name_str |
Materials research (São Carlos. Online) |
repository_id_str |
|
spelling |
Complete Band Gaps in Nano-Piezoelectric Phononic Crystalsnano-piezoelectric phononic crystalband structureplane wave expansion methodcomplete band gapsvibration controlWe study the band structure of elastic waves propagating in a nano-piezoelectric phononic crystal consisting of a polymeric matrix reinforced by BaTiO3 inclusions in square, rectangular, triangular, honeycomb and Kagomé lattices. We also investigate the influence of inclusion cross section geometry - circular, hollow circular, square and rotated square with a 45º angle of rotation with respect to x and y axes. Plane wave expansion method is used to solve the governing equations of motion of a piezoelectric solid based on classical elasticity theory, ignoring nanoscopic size effects, considering two-dimensional periodicity and wave propagation in the xy plane. Complete band gaps between XY and Z modes are observed for all inclusions and the best performance is for circular inclusion in a triangular lattice. Piezoelectricity influences significantly the band gaps for hollow circular inclusion in lower frequencies. We suggest that nano-piezoelectric phononic crystals are feasible for elastic vibration management in GHz.ABM, ABC, ABPol2017-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392017000700015Materials Research v.20 suppl.1 2017reponame:Materials research (São Carlos. Online)instname:Universidade Federal de São Carlos (UFSCAR)instacron:ABM ABC ABPOL10.1590/1980-5373-mr-2017-0298info:eu-repo/semantics/openAccessMiranda Jr.,Edson Jansen Pedrosa deSantos,José Maria Campos Doseng2018-02-16T00:00:00Zoai:scielo:S1516-14392017000700015Revistahttp://www.scielo.br/mrPUBhttps://old.scielo.br/oai/scielo-oai.phpdedz@power.ufscar.br1980-53731516-1439opendoar:2018-02-16T00:00Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR)false |
dc.title.none.fl_str_mv |
Complete Band Gaps in Nano-Piezoelectric Phononic Crystals |
title |
Complete Band Gaps in Nano-Piezoelectric Phononic Crystals |
spellingShingle |
Complete Band Gaps in Nano-Piezoelectric Phononic Crystals Miranda Jr.,Edson Jansen Pedrosa de nano-piezoelectric phononic crystal band structure plane wave expansion method complete band gaps vibration control |
title_short |
Complete Band Gaps in Nano-Piezoelectric Phononic Crystals |
title_full |
Complete Band Gaps in Nano-Piezoelectric Phononic Crystals |
title_fullStr |
Complete Band Gaps in Nano-Piezoelectric Phononic Crystals |
title_full_unstemmed |
Complete Band Gaps in Nano-Piezoelectric Phononic Crystals |
title_sort |
Complete Band Gaps in Nano-Piezoelectric Phononic Crystals |
author |
Miranda Jr.,Edson Jansen Pedrosa de |
author_facet |
Miranda Jr.,Edson Jansen Pedrosa de Santos,José Maria Campos Dos |
author_role |
author |
author2 |
Santos,José Maria Campos Dos |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Miranda Jr.,Edson Jansen Pedrosa de Santos,José Maria Campos Dos |
dc.subject.por.fl_str_mv |
nano-piezoelectric phononic crystal band structure plane wave expansion method complete band gaps vibration control |
topic |
nano-piezoelectric phononic crystal band structure plane wave expansion method complete band gaps vibration control |
description |
We study the band structure of elastic waves propagating in a nano-piezoelectric phononic crystal consisting of a polymeric matrix reinforced by BaTiO3 inclusions in square, rectangular, triangular, honeycomb and Kagomé lattices. We also investigate the influence of inclusion cross section geometry - circular, hollow circular, square and rotated square with a 45º angle of rotation with respect to x and y axes. Plane wave expansion method is used to solve the governing equations of motion of a piezoelectric solid based on classical elasticity theory, ignoring nanoscopic size effects, considering two-dimensional periodicity and wave propagation in the xy plane. Complete band gaps between XY and Z modes are observed for all inclusions and the best performance is for circular inclusion in a triangular lattice. Piezoelectricity influences significantly the band gaps for hollow circular inclusion in lower frequencies. We suggest that nano-piezoelectric phononic crystals are feasible for elastic vibration management in GHz. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392017000700015 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392017000700015 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/1980-5373-mr-2017-0298 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
ABM, ABC, ABPol |
publisher.none.fl_str_mv |
ABM, ABC, ABPol |
dc.source.none.fl_str_mv |
Materials Research v.20 suppl.1 2017 reponame:Materials research (São Carlos. Online) instname:Universidade Federal de São Carlos (UFSCAR) instacron:ABM ABC ABPOL |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
ABM ABC ABPOL |
institution |
ABM ABC ABPOL |
reponame_str |
Materials research (São Carlos. Online) |
collection |
Materials research (São Carlos. Online) |
repository.name.fl_str_mv |
Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
dedz@power.ufscar.br |
_version_ |
1754212671636373504 |