Scaffolds of calcium phosphate cement containing chitosan and gelatin
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Materials research (São Carlos. Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392013000600021 |
Resumo: | Calcium phosphate cements (CPCs) have potential to be used on repairing damaged bones due to their moldability, bioactivity and bioresorbability. These materials combine calcium orthophosphate powders with a liquid leading to a paste that hardens spontaneously at low temperatures. Hence, CPCs could be applied as scaffolds to support cell/tissue growth. This paper studies CPC scaffolds processing by foaming cement's liquid phase in which was added gelatin and chitosan. The former acted to increase the foam stability while the ladder acted as a foaming agent. Moreover, these polymers would enhance scaffold's biological properties by controlling material's total porosity and in vivo resorption. The method proposed led to scaffolds with 58.71% porosity with sizes ranging from 160 to 760 µm and compressive strength of 0.70MPa. After foaming, pores' size, distribution and interconnectivity changed significantly leading to a material that could be applied on bone regeneration since it would allow nutrient's transport, cell attachment and an increase in material degradation rate. |
id |
ABMABCABPOL-1_c7ded7c955b6ac070c872a8d46a8a636 |
---|---|
oai_identifier_str |
oai:scielo:S1516-14392013000600021 |
network_acronym_str |
ABMABCABPOL-1 |
network_name_str |
Materials research (São Carlos. Online) |
repository_id_str |
|
spelling |
Scaffolds of calcium phosphate cement containing chitosan and gelatinscaffoldscalcium phosphate cementsgelatinchitosanCalcium phosphate cements (CPCs) have potential to be used on repairing damaged bones due to their moldability, bioactivity and bioresorbability. These materials combine calcium orthophosphate powders with a liquid leading to a paste that hardens spontaneously at low temperatures. Hence, CPCs could be applied as scaffolds to support cell/tissue growth. This paper studies CPC scaffolds processing by foaming cement's liquid phase in which was added gelatin and chitosan. The former acted to increase the foam stability while the ladder acted as a foaming agent. Moreover, these polymers would enhance scaffold's biological properties by controlling material's total porosity and in vivo resorption. The method proposed led to scaffolds with 58.71% porosity with sizes ranging from 160 to 760 µm and compressive strength of 0.70MPa. After foaming, pores' size, distribution and interconnectivity changed significantly leading to a material that could be applied on bone regeneration since it would allow nutrient's transport, cell attachment and an increase in material degradation rate.ABM, ABC, ABPol2013-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392013000600021Materials Research v.16 n.6 2013reponame:Materials research (São Carlos. Online)instname:Universidade Federal de São Carlos (UFSCAR)instacron:ABM ABC ABPOL10.1590/S1516-14392013005000124info:eu-repo/semantics/openAccessRenó,C. O.Lima,B.F.A.S.Sousa,E.Bertran,C.A.Motisuke,M.eng2013-12-12T00:00:00Zoai:scielo:S1516-14392013000600021Revistahttp://www.scielo.br/mrPUBhttps://old.scielo.br/oai/scielo-oai.phpdedz@power.ufscar.br1980-53731516-1439opendoar:2013-12-12T00:00Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR)false |
dc.title.none.fl_str_mv |
Scaffolds of calcium phosphate cement containing chitosan and gelatin |
title |
Scaffolds of calcium phosphate cement containing chitosan and gelatin |
spellingShingle |
Scaffolds of calcium phosphate cement containing chitosan and gelatin Renó,C. O. scaffolds calcium phosphate cements gelatin chitosan |
title_short |
Scaffolds of calcium phosphate cement containing chitosan and gelatin |
title_full |
Scaffolds of calcium phosphate cement containing chitosan and gelatin |
title_fullStr |
Scaffolds of calcium phosphate cement containing chitosan and gelatin |
title_full_unstemmed |
Scaffolds of calcium phosphate cement containing chitosan and gelatin |
title_sort |
Scaffolds of calcium phosphate cement containing chitosan and gelatin |
author |
Renó,C. O. |
author_facet |
Renó,C. O. Lima,B.F.A.S. Sousa,E. Bertran,C.A. Motisuke,M. |
author_role |
author |
author2 |
Lima,B.F.A.S. Sousa,E. Bertran,C.A. Motisuke,M. |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Renó,C. O. Lima,B.F.A.S. Sousa,E. Bertran,C.A. Motisuke,M. |
dc.subject.por.fl_str_mv |
scaffolds calcium phosphate cements gelatin chitosan |
topic |
scaffolds calcium phosphate cements gelatin chitosan |
description |
Calcium phosphate cements (CPCs) have potential to be used on repairing damaged bones due to their moldability, bioactivity and bioresorbability. These materials combine calcium orthophosphate powders with a liquid leading to a paste that hardens spontaneously at low temperatures. Hence, CPCs could be applied as scaffolds to support cell/tissue growth. This paper studies CPC scaffolds processing by foaming cement's liquid phase in which was added gelatin and chitosan. The former acted to increase the foam stability while the ladder acted as a foaming agent. Moreover, these polymers would enhance scaffold's biological properties by controlling material's total porosity and in vivo resorption. The method proposed led to scaffolds with 58.71% porosity with sizes ranging from 160 to 760 µm and compressive strength of 0.70MPa. After foaming, pores' size, distribution and interconnectivity changed significantly leading to a material that could be applied on bone regeneration since it would allow nutrient's transport, cell attachment and an increase in material degradation rate. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-12-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392013000600021 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1516-14392013000600021 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S1516-14392013005000124 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
ABM, ABC, ABPol |
publisher.none.fl_str_mv |
ABM, ABC, ABPol |
dc.source.none.fl_str_mv |
Materials Research v.16 n.6 2013 reponame:Materials research (São Carlos. Online) instname:Universidade Federal de São Carlos (UFSCAR) instacron:ABM ABC ABPOL |
instname_str |
Universidade Federal de São Carlos (UFSCAR) |
instacron_str |
ABM ABC ABPOL |
institution |
ABM ABC ABPOL |
reponame_str |
Materials research (São Carlos. Online) |
collection |
Materials research (São Carlos. Online) |
repository.name.fl_str_mv |
Materials research (São Carlos. Online) - Universidade Federal de São Carlos (UFSCAR) |
repository.mail.fl_str_mv |
dedz@power.ufscar.br |
_version_ |
1754212663255105536 |