Cochlear implantation in an animal model documents cochlear damage at the tip of the implant

Detalhes bibliográficos
Autor(a) principal: Andrade,José Santos Cruz de
Data de Publicação: 2022
Outros Autores: Baumhoff,Peter, Cruz,Oswaldo Laércio Mendonça, Lenarz,Thomas, Kral,Andrej
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Brazilian Journal of Otorhinolaryngology
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1808-86942022000400546
Resumo: Abstract Introduction: Electrocochleography has recently emerged as a diagnostic tool in cochlear implant surgery, purposing hearing preservation and optimal electrode positioning. Objective: In this experimental study, extra-cochlear potentials were obtained during cochlear implant surgery in guinea pigs. The aim was to determine electrophysiological changes indicating cochlear trauma after cochleostomy and after electrode implantation in different insertion depths. Methods: Normal-hearing guinea pigs (n = 14) were implanted uni- or bilaterally with a multichannel electrode. The extra-cochlear cochlear nerve action potentials were obtained in response to acoustic stimuli at specific frequencies before and after cochleostomy, and after introduction of the electrode bundle. After the electrophysiological experiments, the guinea pigs were euthanized and microtomography was performed, in order to determine the position of the electrode and to calculate of the depth of insertion. Based on the changes of amplitude and thresholds in relation to the stimulus frequency, the electrophysiological data and the position obtained by the microtomography reconstruction were compared. Results: Cochleostomy promoted a small electrophysiological impact, while electrode insertion caused changes in the amplitude of extra-cochlear electrophysiological potentials over a wide range of frequencies, especially in the deepest insertions. There was, however, preservation of the electrical response to low frequency stimuli in most cases, indicating a limited auditory impact in the intraoperative evaluation. The mean insertion depth of the apical electrodes was 5339.56 μm (±306.45 – 6 inserted contacts) and 4447.75 μm (±290.23 – 5 inserted contacts). Conclusions: The main electrophysiological changes observed during surgical procedures occurred during implantation of the electrode, especially the deepest insertions, whereas the cochleostomy disturbed the potentials to a lesser extent. While hearing loss was often observed apical to the cochlear implant, it was possible to preserve low frequencies after insertion. © 2020 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. This is an open access article under the CC BY license (http:// creativecommons.org/licenses/by/4.0/).
id ABORL-F-1_d4049c4bd10e791b7c1e3a313b046d46
oai_identifier_str oai:scielo:S1808-86942022000400546
network_acronym_str ABORL-F-1
network_name_str Brazilian Journal of Otorhinolaryngology
repository_id_str
spelling Cochlear implantation in an animal model documents cochlear damage at the tip of the implantCochlear implantHearing preservationGuinea pigsAbstract Introduction: Electrocochleography has recently emerged as a diagnostic tool in cochlear implant surgery, purposing hearing preservation and optimal electrode positioning. Objective: In this experimental study, extra-cochlear potentials were obtained during cochlear implant surgery in guinea pigs. The aim was to determine electrophysiological changes indicating cochlear trauma after cochleostomy and after electrode implantation in different insertion depths. Methods: Normal-hearing guinea pigs (n = 14) were implanted uni- or bilaterally with a multichannel electrode. The extra-cochlear cochlear nerve action potentials were obtained in response to acoustic stimuli at specific frequencies before and after cochleostomy, and after introduction of the electrode bundle. After the electrophysiological experiments, the guinea pigs were euthanized and microtomography was performed, in order to determine the position of the electrode and to calculate of the depth of insertion. Based on the changes of amplitude and thresholds in relation to the stimulus frequency, the electrophysiological data and the position obtained by the microtomography reconstruction were compared. Results: Cochleostomy promoted a small electrophysiological impact, while electrode insertion caused changes in the amplitude of extra-cochlear electrophysiological potentials over a wide range of frequencies, especially in the deepest insertions. There was, however, preservation of the electrical response to low frequency stimuli in most cases, indicating a limited auditory impact in the intraoperative evaluation. The mean insertion depth of the apical electrodes was 5339.56 μm (±306.45 – 6 inserted contacts) and 4447.75 μm (±290.23 – 5 inserted contacts). Conclusions: The main electrophysiological changes observed during surgical procedures occurred during implantation of the electrode, especially the deepest insertions, whereas the cochleostomy disturbed the potentials to a lesser extent. While hearing loss was often observed apical to the cochlear implant, it was possible to preserve low frequencies after insertion. © 2020 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. This is an open access article under the CC BY license (http:// creativecommons.org/licenses/by/4.0/).Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial.2022-08-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1808-86942022000400546Brazilian Journal of Otorhinolaryngology v.88 n.4 2022reponame:Brazilian Journal of Otorhinolaryngologyinstname:Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial (ABORL-CCF)instacron:ABORL-CCF10.1016/j.bjorl.2020.07.017info:eu-repo/semantics/openAccessAndrade,José Santos Cruz deBaumhoff,PeterCruz,Oswaldo Laércio MendonçaLenarz,ThomasKral,Andrejeng2022-08-10T00:00:00Zoai:scielo:S1808-86942022000400546Revistahttp://www.bjorl.org.br/https://old.scielo.br/oai/scielo-oai.phprevista@aborlccf.org.br||revista@aborlccf.org.br1808-86861808-8686opendoar:2022-08-10T00:00Brazilian Journal of Otorhinolaryngology - Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial (ABORL-CCF)false
dc.title.none.fl_str_mv Cochlear implantation in an animal model documents cochlear damage at the tip of the implant
title Cochlear implantation in an animal model documents cochlear damage at the tip of the implant
spellingShingle Cochlear implantation in an animal model documents cochlear damage at the tip of the implant
Andrade,José Santos Cruz de
Cochlear implant
Hearing preservation
Guinea pigs
title_short Cochlear implantation in an animal model documents cochlear damage at the tip of the implant
title_full Cochlear implantation in an animal model documents cochlear damage at the tip of the implant
title_fullStr Cochlear implantation in an animal model documents cochlear damage at the tip of the implant
title_full_unstemmed Cochlear implantation in an animal model documents cochlear damage at the tip of the implant
title_sort Cochlear implantation in an animal model documents cochlear damage at the tip of the implant
author Andrade,José Santos Cruz de
author_facet Andrade,José Santos Cruz de
Baumhoff,Peter
Cruz,Oswaldo Laércio Mendonça
Lenarz,Thomas
Kral,Andrej
author_role author
author2 Baumhoff,Peter
Cruz,Oswaldo Laércio Mendonça
Lenarz,Thomas
Kral,Andrej
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Andrade,José Santos Cruz de
Baumhoff,Peter
Cruz,Oswaldo Laércio Mendonça
Lenarz,Thomas
Kral,Andrej
dc.subject.por.fl_str_mv Cochlear implant
Hearing preservation
Guinea pigs
topic Cochlear implant
Hearing preservation
Guinea pigs
description Abstract Introduction: Electrocochleography has recently emerged as a diagnostic tool in cochlear implant surgery, purposing hearing preservation and optimal electrode positioning. Objective: In this experimental study, extra-cochlear potentials were obtained during cochlear implant surgery in guinea pigs. The aim was to determine electrophysiological changes indicating cochlear trauma after cochleostomy and after electrode implantation in different insertion depths. Methods: Normal-hearing guinea pigs (n = 14) were implanted uni- or bilaterally with a multichannel electrode. The extra-cochlear cochlear nerve action potentials were obtained in response to acoustic stimuli at specific frequencies before and after cochleostomy, and after introduction of the electrode bundle. After the electrophysiological experiments, the guinea pigs were euthanized and microtomography was performed, in order to determine the position of the electrode and to calculate of the depth of insertion. Based on the changes of amplitude and thresholds in relation to the stimulus frequency, the electrophysiological data and the position obtained by the microtomography reconstruction were compared. Results: Cochleostomy promoted a small electrophysiological impact, while electrode insertion caused changes in the amplitude of extra-cochlear electrophysiological potentials over a wide range of frequencies, especially in the deepest insertions. There was, however, preservation of the electrical response to low frequency stimuli in most cases, indicating a limited auditory impact in the intraoperative evaluation. The mean insertion depth of the apical electrodes was 5339.56 μm (±306.45 – 6 inserted contacts) and 4447.75 μm (±290.23 – 5 inserted contacts). Conclusions: The main electrophysiological changes observed during surgical procedures occurred during implantation of the electrode, especially the deepest insertions, whereas the cochleostomy disturbed the potentials to a lesser extent. While hearing loss was often observed apical to the cochlear implant, it was possible to preserve low frequencies after insertion. © 2020 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. This is an open access article under the CC BY license (http:// creativecommons.org/licenses/by/4.0/).
publishDate 2022
dc.date.none.fl_str_mv 2022-08-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1808-86942022000400546
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1808-86942022000400546
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1016/j.bjorl.2020.07.017
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial.
publisher.none.fl_str_mv Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial.
dc.source.none.fl_str_mv Brazilian Journal of Otorhinolaryngology v.88 n.4 2022
reponame:Brazilian Journal of Otorhinolaryngology
instname:Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial (ABORL-CCF)
instacron:ABORL-CCF
instname_str Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial (ABORL-CCF)
instacron_str ABORL-CCF
institution ABORL-CCF
reponame_str Brazilian Journal of Otorhinolaryngology
collection Brazilian Journal of Otorhinolaryngology
repository.name.fl_str_mv Brazilian Journal of Otorhinolaryngology - Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial (ABORL-CCF)
repository.mail.fl_str_mv revista@aborlccf.org.br||revista@aborlccf.org.br
_version_ 1754575995006877696