Novos biomateriais: híbridos orgânico-inorgânicos bioativos
Autor(a) principal: | |
---|---|
Data de Publicação: | 1999 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Polímeros (São Carlos. Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-14281999000400018 |
Resumo: | Materiais bioativos têm a capacidade de interagir com tecidos naturais, provocando reações que favoreçam o desenvolvimento de processos como: fixação de implantes, biocolonização, regeneração de tecidos anfitriões ou biodegradação do material. Grande parte dos materiais bioativos são cerâmicas. O objetivo deste trabalho envolve o desenvolvimento de novos biomateriais que apresentem níveis controláveis de reatividade a partir da combinação a nível nanométrico ou molecular de fases poliméricas e inorgânicas. Neste trabalho foram produzidos híbridos combinando álcool polivinílico (PVA) e tetraetil ortossilicato ou tetrametil ortossilicato dopados com sais de cálcio e alcóxido de fósforo. A caracterização do material produzido foi feita utilizando-se as seguintes técnicas: teste de inchamento por solvente, espectroscopia de infravermelho, microscopia eletrônica e análise térmica (DSC e TGA). O grau de reatividade foi determinado a partir da inserção das amostras em soluções aquosas por diferentes períodos de tempo. A partir do procedimento desenvolvido foram produzidos híbridos, na forma de filmes transparentes e flexíveis, de PVA-silicatos de cálcio e fósforo com composição variando de 25 a 100% em volume de PVA no híbrido e 40 a 80% molar de sílica na fase inorgânica. Os testes de imersão em solução aquosa demonstraram que os híbridos produzidos podem exibir reatividade controlável, variando de elevada degradabilidade até comportamento tipo gel, determinado através da avaliação da cinética de lixiviação e precipitação dos íons cálcio e fosfato. Os resultados mostraram ainda que o grau de reatividade dos materiais pode ser controlado através da manipulação de fatores estruturais como a densidade de ligações cruzadas, proporção das fases, densidade e composição da fase inorgânica, entre outros. |
id |
ABPO-1_4d7c69212256a981dbe04de2fbfed510 |
---|---|
oai_identifier_str |
oai:scielo:S0104-14281999000400018 |
network_acronym_str |
ABPO-1 |
network_name_str |
Polímeros (São Carlos. Online) |
repository_id_str |
|
spelling |
Novos biomateriais: híbridos orgânico-inorgânicos bioativosHíbridosmateriais bioativosbiomateriaisálcool polivinílicobiopolímerosMateriais bioativos têm a capacidade de interagir com tecidos naturais, provocando reações que favoreçam o desenvolvimento de processos como: fixação de implantes, biocolonização, regeneração de tecidos anfitriões ou biodegradação do material. Grande parte dos materiais bioativos são cerâmicas. O objetivo deste trabalho envolve o desenvolvimento de novos biomateriais que apresentem níveis controláveis de reatividade a partir da combinação a nível nanométrico ou molecular de fases poliméricas e inorgânicas. Neste trabalho foram produzidos híbridos combinando álcool polivinílico (PVA) e tetraetil ortossilicato ou tetrametil ortossilicato dopados com sais de cálcio e alcóxido de fósforo. A caracterização do material produzido foi feita utilizando-se as seguintes técnicas: teste de inchamento por solvente, espectroscopia de infravermelho, microscopia eletrônica e análise térmica (DSC e TGA). O grau de reatividade foi determinado a partir da inserção das amostras em soluções aquosas por diferentes períodos de tempo. A partir do procedimento desenvolvido foram produzidos híbridos, na forma de filmes transparentes e flexíveis, de PVA-silicatos de cálcio e fósforo com composição variando de 25 a 100% em volume de PVA no híbrido e 40 a 80% molar de sílica na fase inorgânica. Os testes de imersão em solução aquosa demonstraram que os híbridos produzidos podem exibir reatividade controlável, variando de elevada degradabilidade até comportamento tipo gel, determinado através da avaliação da cinética de lixiviação e precipitação dos íons cálcio e fosfato. Os resultados mostraram ainda que o grau de reatividade dos materiais pode ser controlado através da manipulação de fatores estruturais como a densidade de ligações cruzadas, proporção das fases, densidade e composição da fase inorgânica, entre outros.Associação Brasileira de Polímeros1999-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-14281999000400018Polímeros v.9 n.4 1999reponame:Polímeros (São Carlos. Online)instname:Associação Brasileira de Polímeros (ABPol)instacron:ABPO10.1590/S0104-14281999000400018info:eu-repo/semantics/openAccessPereira,Ana Paula V.Vasconcelos,Wander L.Oréfice,Rodrigo L.por2003-05-21T00:00:00Zoai:scielo:S0104-14281999000400018Revistahttp://www.scielo.br/pohttps://old.scielo.br/oai/scielo-oai.php||revista@abpol.org.br1678-51690104-1428opendoar:2003-05-21T00:00Polímeros (São Carlos. Online) - Associação Brasileira de Polímeros (ABPol)false |
dc.title.none.fl_str_mv |
Novos biomateriais: híbridos orgânico-inorgânicos bioativos |
title |
Novos biomateriais: híbridos orgânico-inorgânicos bioativos |
spellingShingle |
Novos biomateriais: híbridos orgânico-inorgânicos bioativos Pereira,Ana Paula V. Híbridos materiais bioativos biomateriais álcool polivinílico biopolímeros |
title_short |
Novos biomateriais: híbridos orgânico-inorgânicos bioativos |
title_full |
Novos biomateriais: híbridos orgânico-inorgânicos bioativos |
title_fullStr |
Novos biomateriais: híbridos orgânico-inorgânicos bioativos |
title_full_unstemmed |
Novos biomateriais: híbridos orgânico-inorgânicos bioativos |
title_sort |
Novos biomateriais: híbridos orgânico-inorgânicos bioativos |
author |
Pereira,Ana Paula V. |
author_facet |
Pereira,Ana Paula V. Vasconcelos,Wander L. Oréfice,Rodrigo L. |
author_role |
author |
author2 |
Vasconcelos,Wander L. Oréfice,Rodrigo L. |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Pereira,Ana Paula V. Vasconcelos,Wander L. Oréfice,Rodrigo L. |
dc.subject.por.fl_str_mv |
Híbridos materiais bioativos biomateriais álcool polivinílico biopolímeros |
topic |
Híbridos materiais bioativos biomateriais álcool polivinílico biopolímeros |
description |
Materiais bioativos têm a capacidade de interagir com tecidos naturais, provocando reações que favoreçam o desenvolvimento de processos como: fixação de implantes, biocolonização, regeneração de tecidos anfitriões ou biodegradação do material. Grande parte dos materiais bioativos são cerâmicas. O objetivo deste trabalho envolve o desenvolvimento de novos biomateriais que apresentem níveis controláveis de reatividade a partir da combinação a nível nanométrico ou molecular de fases poliméricas e inorgânicas. Neste trabalho foram produzidos híbridos combinando álcool polivinílico (PVA) e tetraetil ortossilicato ou tetrametil ortossilicato dopados com sais de cálcio e alcóxido de fósforo. A caracterização do material produzido foi feita utilizando-se as seguintes técnicas: teste de inchamento por solvente, espectroscopia de infravermelho, microscopia eletrônica e análise térmica (DSC e TGA). O grau de reatividade foi determinado a partir da inserção das amostras em soluções aquosas por diferentes períodos de tempo. A partir do procedimento desenvolvido foram produzidos híbridos, na forma de filmes transparentes e flexíveis, de PVA-silicatos de cálcio e fósforo com composição variando de 25 a 100% em volume de PVA no híbrido e 40 a 80% molar de sílica na fase inorgânica. Os testes de imersão em solução aquosa demonstraram que os híbridos produzidos podem exibir reatividade controlável, variando de elevada degradabilidade até comportamento tipo gel, determinado através da avaliação da cinética de lixiviação e precipitação dos íons cálcio e fosfato. Os resultados mostraram ainda que o grau de reatividade dos materiais pode ser controlado através da manipulação de fatores estruturais como a densidade de ligações cruzadas, proporção das fases, densidade e composição da fase inorgânica, entre outros. |
publishDate |
1999 |
dc.date.none.fl_str_mv |
1999-12-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-14281999000400018 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0104-14281999000400018 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
10.1590/S0104-14281999000400018 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Associação Brasileira de Polímeros |
publisher.none.fl_str_mv |
Associação Brasileira de Polímeros |
dc.source.none.fl_str_mv |
Polímeros v.9 n.4 1999 reponame:Polímeros (São Carlos. Online) instname:Associação Brasileira de Polímeros (ABPol) instacron:ABPO |
instname_str |
Associação Brasileira de Polímeros (ABPol) |
instacron_str |
ABPO |
institution |
ABPO |
reponame_str |
Polímeros (São Carlos. Online) |
collection |
Polímeros (São Carlos. Online) |
repository.name.fl_str_mv |
Polímeros (São Carlos. Online) - Associação Brasileira de Polímeros (ABPol) |
repository.mail.fl_str_mv |
||revista@abpol.org.br |
_version_ |
1754212583485734912 |