Why analyze germination experiments using Generalized Linear Models?
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Journal of Seed Science |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2317-15372018000300281 |
Resumo: | Abstract: We compared the goodness of fit and efficiency of models for germination. Generalized Linear Models (GLMs) were performed with a randomized component corresponding to the percentage of germination for a normal distribution or to the number of germinated seeds for a binomial distribution. Lower levels of Akaikes’s Information Criterion (AIC) and Bayesian Information Criterion (BIC) combined, data adherence to simulated envelopes of normal plots and corrected confidence intervals for the means guaranteed the binomial model a better fit, justifying the importance of GLMs with binomial distribution. Some authors criticize the inappropriate use of analysis of variance (ANOVA) for discrete data such as copaiba oil, but we noted that all model assumptions were met, even though the species had dormant seeds with irregular germination. |
id |
ABRATES-1_dd1adca3f41d483c981f10500f1627ba |
---|---|
oai_identifier_str |
oai:scielo:S2317-15372018000300281 |
network_acronym_str |
ABRATES-1 |
network_name_str |
Journal of Seed Science |
repository_id_str |
|
spelling |
Why analyze germination experiments using Generalized Linear Models?AICANOVA assumptionsCopaifera langsdorffii Desfforest speciesAbstract: We compared the goodness of fit and efficiency of models for germination. Generalized Linear Models (GLMs) were performed with a randomized component corresponding to the percentage of germination for a normal distribution or to the number of germinated seeds for a binomial distribution. Lower levels of Akaikes’s Information Criterion (AIC) and Bayesian Information Criterion (BIC) combined, data adherence to simulated envelopes of normal plots and corrected confidence intervals for the means guaranteed the binomial model a better fit, justifying the importance of GLMs with binomial distribution. Some authors criticize the inappropriate use of analysis of variance (ANOVA) for discrete data such as copaiba oil, but we noted that all model assumptions were met, even though the species had dormant seeds with irregular germination.ABRATES - Associação Brasileira de Tecnologia de Sementes2018-09-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S2317-15372018000300281Journal of Seed Science v.40 n.3 2018reponame:Journal of Seed Scienceinstname:Associação Brasileira de Tecnologia de Sementes (ABRATES)instacron:ABRATES10.1590/2317-1545v40n3185259info:eu-repo/semantics/openAccessCarvalho,Fábio JanoniSantana,Denise Garcia deAraújo,Lúcio Borges deeng2018-10-08T00:00:00Zoai:scielo:S2317-15372018000300281Revistahttp://www.scielo.br/scielo.php?script=sci_serial&pid=2317-1537&lng=en&nrm=isohttps://old.scielo.br/oai/scielo-oai.php||abrates@abrates.org.br2317-15452317-1537opendoar:2018-10-08T00:00Journal of Seed Science - Associação Brasileira de Tecnologia de Sementes (ABRATES)false |
dc.title.none.fl_str_mv |
Why analyze germination experiments using Generalized Linear Models? |
title |
Why analyze germination experiments using Generalized Linear Models? |
spellingShingle |
Why analyze germination experiments using Generalized Linear Models? Carvalho,Fábio Janoni AIC ANOVA assumptions Copaifera langsdorffii Desf forest species |
title_short |
Why analyze germination experiments using Generalized Linear Models? |
title_full |
Why analyze germination experiments using Generalized Linear Models? |
title_fullStr |
Why analyze germination experiments using Generalized Linear Models? |
title_full_unstemmed |
Why analyze germination experiments using Generalized Linear Models? |
title_sort |
Why analyze germination experiments using Generalized Linear Models? |
author |
Carvalho,Fábio Janoni |
author_facet |
Carvalho,Fábio Janoni Santana,Denise Garcia de Araújo,Lúcio Borges de |
author_role |
author |
author2 |
Santana,Denise Garcia de Araújo,Lúcio Borges de |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Carvalho,Fábio Janoni Santana,Denise Garcia de Araújo,Lúcio Borges de |
dc.subject.por.fl_str_mv |
AIC ANOVA assumptions Copaifera langsdorffii Desf forest species |
topic |
AIC ANOVA assumptions Copaifera langsdorffii Desf forest species |
description |
Abstract: We compared the goodness of fit and efficiency of models for germination. Generalized Linear Models (GLMs) were performed with a randomized component corresponding to the percentage of germination for a normal distribution or to the number of germinated seeds for a binomial distribution. Lower levels of Akaikes’s Information Criterion (AIC) and Bayesian Information Criterion (BIC) combined, data adherence to simulated envelopes of normal plots and corrected confidence intervals for the means guaranteed the binomial model a better fit, justifying the importance of GLMs with binomial distribution. Some authors criticize the inappropriate use of analysis of variance (ANOVA) for discrete data such as copaiba oil, but we noted that all model assumptions were met, even though the species had dormant seeds with irregular germination. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-09-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2317-15372018000300281 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S2317-15372018000300281 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/2317-1545v40n3185259 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
ABRATES - Associação Brasileira de Tecnologia de Sementes |
publisher.none.fl_str_mv |
ABRATES - Associação Brasileira de Tecnologia de Sementes |
dc.source.none.fl_str_mv |
Journal of Seed Science v.40 n.3 2018 reponame:Journal of Seed Science instname:Associação Brasileira de Tecnologia de Sementes (ABRATES) instacron:ABRATES |
instname_str |
Associação Brasileira de Tecnologia de Sementes (ABRATES) |
instacron_str |
ABRATES |
institution |
ABRATES |
reponame_str |
Journal of Seed Science |
collection |
Journal of Seed Science |
repository.name.fl_str_mv |
Journal of Seed Science - Associação Brasileira de Tecnologia de Sementes (ABRATES) |
repository.mail.fl_str_mv |
||abrates@abrates.org.br |
_version_ |
1754212982559080448 |