Estimating total claim size in the auto insurance industry: a comparison between tweedie and zero-adjusted inverse gaussian distribution
Autor(a) principal: | |
---|---|
Data de Publicação: | 2011 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | BAR - Brazilian Administration Review |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-76922011000100004 |
Resumo: | The objective of this article is to estimate insurance claims from an auto dataset using the Tweedie and zeroadjusted inverse Gaussian (ZAIG) methods. We identify factors that influence claim size and probability, and compare the results of these methods which both forecast outcomes accurately. Vehicle characteristics like territory, age, origin and type distinctly influence claim size and probability. This distinct impact is not always present in the Tweedie estimated model. Auto insurers should consider estimating total claim size using both the Tweedie and ZAIG methods. This allows for an estimation of confidence interval based on empirical quantiles using bootstrap simulation. Furthermore, the fitted models may be useful in developing a strategy to obtain premium pricing. |
id |
ANPAD-1_ee0c99164a601e541fec048b74f39c71 |
---|---|
oai_identifier_str |
oai:scielo:S1807-76922011000100004 |
network_acronym_str |
ANPAD-1 |
network_name_str |
BAR - Brazilian Administration Review |
repository_id_str |
|
spelling |
Estimating total claim size in the auto insurance industry: a comparison between tweedie and zero-adjusted inverse gaussian distributionauto insuranceclaim sizeregressionTweedieZAIG materThe objective of this article is to estimate insurance claims from an auto dataset using the Tweedie and zeroadjusted inverse Gaussian (ZAIG) methods. We identify factors that influence claim size and probability, and compare the results of these methods which both forecast outcomes accurately. Vehicle characteristics like territory, age, origin and type distinctly influence claim size and probability. This distinct impact is not always present in the Tweedie estimated model. Auto insurers should consider estimating total claim size using both the Tweedie and ZAIG methods. This allows for an estimation of confidence interval based on empirical quantiles using bootstrap simulation. Furthermore, the fitted models may be useful in developing a strategy to obtain premium pricing.ANPAD - Associação Nacional de Pós-Graduação e Pesquisa em Administração2011-03-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-76922011000100004BAR - Brazilian Administration Review v.8 n.1 2011reponame:BAR - Brazilian Administration Reviewinstname:Associação Nacional de Pós-Graduação e Pesquisa em Administração (ANPAD)instacron:ANPAD10.1590/S1807-76922011000100004info:eu-repo/semantics/openAccessBortoluzzo,Adriana BruscatoClaro,Danny PimentelCaetano,Marco Antonio LeonelArtes,Rinaldoeng2011-01-20T00:00:00Zoai:scielo:S1807-76922011000100004Revistahttp://www.scielo.br/scielo.php?script=sci_serial&pid=1807-7692&lng=pt&nrm=isohttps://old.scielo.br/oai/scielo-oai.php||bar@anpad.org.br1807-76921807-7692opendoar:2011-01-20T00:00BAR - Brazilian Administration Review - Associação Nacional de Pós-Graduação e Pesquisa em Administração (ANPAD)false |
dc.title.none.fl_str_mv |
Estimating total claim size in the auto insurance industry: a comparison between tweedie and zero-adjusted inverse gaussian distribution |
title |
Estimating total claim size in the auto insurance industry: a comparison between tweedie and zero-adjusted inverse gaussian distribution |
spellingShingle |
Estimating total claim size in the auto insurance industry: a comparison between tweedie and zero-adjusted inverse gaussian distribution Bortoluzzo,Adriana Bruscato auto insurance claim size regression Tweedie ZAIG mater |
title_short |
Estimating total claim size in the auto insurance industry: a comparison between tweedie and zero-adjusted inverse gaussian distribution |
title_full |
Estimating total claim size in the auto insurance industry: a comparison between tweedie and zero-adjusted inverse gaussian distribution |
title_fullStr |
Estimating total claim size in the auto insurance industry: a comparison between tweedie and zero-adjusted inverse gaussian distribution |
title_full_unstemmed |
Estimating total claim size in the auto insurance industry: a comparison between tweedie and zero-adjusted inverse gaussian distribution |
title_sort |
Estimating total claim size in the auto insurance industry: a comparison between tweedie and zero-adjusted inverse gaussian distribution |
author |
Bortoluzzo,Adriana Bruscato |
author_facet |
Bortoluzzo,Adriana Bruscato Claro,Danny Pimentel Caetano,Marco Antonio Leonel Artes,Rinaldo |
author_role |
author |
author2 |
Claro,Danny Pimentel Caetano,Marco Antonio Leonel Artes,Rinaldo |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Bortoluzzo,Adriana Bruscato Claro,Danny Pimentel Caetano,Marco Antonio Leonel Artes,Rinaldo |
dc.subject.por.fl_str_mv |
auto insurance claim size regression Tweedie ZAIG mater |
topic |
auto insurance claim size regression Tweedie ZAIG mater |
description |
The objective of this article is to estimate insurance claims from an auto dataset using the Tweedie and zeroadjusted inverse Gaussian (ZAIG) methods. We identify factors that influence claim size and probability, and compare the results of these methods which both forecast outcomes accurately. Vehicle characteristics like territory, age, origin and type distinctly influence claim size and probability. This distinct impact is not always present in the Tweedie estimated model. Auto insurers should consider estimating total claim size using both the Tweedie and ZAIG methods. This allows for an estimation of confidence interval based on empirical quantiles using bootstrap simulation. Furthermore, the fitted models may be useful in developing a strategy to obtain premium pricing. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-03-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-76922011000100004 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-76922011000100004 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/S1807-76922011000100004 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
ANPAD - Associação Nacional de Pós-Graduação e Pesquisa em Administração |
publisher.none.fl_str_mv |
ANPAD - Associação Nacional de Pós-Graduação e Pesquisa em Administração |
dc.source.none.fl_str_mv |
BAR - Brazilian Administration Review v.8 n.1 2011 reponame:BAR - Brazilian Administration Review instname:Associação Nacional de Pós-Graduação e Pesquisa em Administração (ANPAD) instacron:ANPAD |
instname_str |
Associação Nacional de Pós-Graduação e Pesquisa em Administração (ANPAD) |
instacron_str |
ANPAD |
institution |
ANPAD |
reponame_str |
BAR - Brazilian Administration Review |
collection |
BAR - Brazilian Administration Review |
repository.name.fl_str_mv |
BAR - Brazilian Administration Review - Associação Nacional de Pós-Graduação e Pesquisa em Administração (ANPAD) |
repository.mail.fl_str_mv |
||bar@anpad.org.br |
_version_ |
1754209123261480960 |