Estimating total claim size in the auto insurance industry: a comparison between tweedie and zero-adjusted inverse gaussian distribution

Detalhes bibliográficos
Autor(a) principal: Bortoluzzo,Adriana Bruscato
Data de Publicação: 2011
Outros Autores: Claro,Danny Pimentel, Caetano,Marco Antonio Leonel, Artes,Rinaldo
Tipo de documento: Artigo
Idioma: eng
Título da fonte: BAR - Brazilian Administration Review
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-76922011000100004
Resumo: The objective of this article is to estimate insurance claims from an auto dataset using the Tweedie and zeroadjusted inverse Gaussian (ZAIG) methods. We identify factors that influence claim size and probability, and compare the results of these methods which both forecast outcomes accurately. Vehicle characteristics like territory, age, origin and type distinctly influence claim size and probability. This distinct impact is not always present in the Tweedie estimated model. Auto insurers should consider estimating total claim size using both the Tweedie and ZAIG methods. This allows for an estimation of confidence interval based on empirical quantiles using bootstrap simulation. Furthermore, the fitted models may be useful in developing a strategy to obtain premium pricing.
id ANPAD-1_ee0c99164a601e541fec048b74f39c71
oai_identifier_str oai:scielo:S1807-76922011000100004
network_acronym_str ANPAD-1
network_name_str BAR - Brazilian Administration Review
repository_id_str
spelling Estimating total claim size in the auto insurance industry: a comparison between tweedie and zero-adjusted inverse gaussian distributionauto insuranceclaim sizeregressionTweedieZAIG materThe objective of this article is to estimate insurance claims from an auto dataset using the Tweedie and zeroadjusted inverse Gaussian (ZAIG) methods. We identify factors that influence claim size and probability, and compare the results of these methods which both forecast outcomes accurately. Vehicle characteristics like territory, age, origin and type distinctly influence claim size and probability. This distinct impact is not always present in the Tweedie estimated model. Auto insurers should consider estimating total claim size using both the Tweedie and ZAIG methods. This allows for an estimation of confidence interval based on empirical quantiles using bootstrap simulation. Furthermore, the fitted models may be useful in developing a strategy to obtain premium pricing.ANPAD - Associação Nacional de Pós-Graduação e Pesquisa em Administração2011-03-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-76922011000100004BAR - Brazilian Administration Review v.8 n.1 2011reponame:BAR - Brazilian Administration Reviewinstname:Associação Nacional de Pós-Graduação e Pesquisa em Administração (ANPAD)instacron:ANPAD10.1590/S1807-76922011000100004info:eu-repo/semantics/openAccessBortoluzzo,Adriana BruscatoClaro,Danny PimentelCaetano,Marco Antonio LeonelArtes,Rinaldoeng2011-01-20T00:00:00Zoai:scielo:S1807-76922011000100004Revistahttp://www.scielo.br/scielo.php?script=sci_serial&pid=1807-7692&lng=pt&nrm=isohttps://old.scielo.br/oai/scielo-oai.php||bar@anpad.org.br1807-76921807-7692opendoar:2011-01-20T00:00BAR - Brazilian Administration Review - Associação Nacional de Pós-Graduação e Pesquisa em Administração (ANPAD)false
dc.title.none.fl_str_mv Estimating total claim size in the auto insurance industry: a comparison between tweedie and zero-adjusted inverse gaussian distribution
title Estimating total claim size in the auto insurance industry: a comparison between tweedie and zero-adjusted inverse gaussian distribution
spellingShingle Estimating total claim size in the auto insurance industry: a comparison between tweedie and zero-adjusted inverse gaussian distribution
Bortoluzzo,Adriana Bruscato
auto insurance
claim size
regression
Tweedie
ZAIG mater
title_short Estimating total claim size in the auto insurance industry: a comparison between tweedie and zero-adjusted inverse gaussian distribution
title_full Estimating total claim size in the auto insurance industry: a comparison between tweedie and zero-adjusted inverse gaussian distribution
title_fullStr Estimating total claim size in the auto insurance industry: a comparison between tweedie and zero-adjusted inverse gaussian distribution
title_full_unstemmed Estimating total claim size in the auto insurance industry: a comparison between tweedie and zero-adjusted inverse gaussian distribution
title_sort Estimating total claim size in the auto insurance industry: a comparison between tweedie and zero-adjusted inverse gaussian distribution
author Bortoluzzo,Adriana Bruscato
author_facet Bortoluzzo,Adriana Bruscato
Claro,Danny Pimentel
Caetano,Marco Antonio Leonel
Artes,Rinaldo
author_role author
author2 Claro,Danny Pimentel
Caetano,Marco Antonio Leonel
Artes,Rinaldo
author2_role author
author
author
dc.contributor.author.fl_str_mv Bortoluzzo,Adriana Bruscato
Claro,Danny Pimentel
Caetano,Marco Antonio Leonel
Artes,Rinaldo
dc.subject.por.fl_str_mv auto insurance
claim size
regression
Tweedie
ZAIG mater
topic auto insurance
claim size
regression
Tweedie
ZAIG mater
description The objective of this article is to estimate insurance claims from an auto dataset using the Tweedie and zeroadjusted inverse Gaussian (ZAIG) methods. We identify factors that influence claim size and probability, and compare the results of these methods which both forecast outcomes accurately. Vehicle characteristics like territory, age, origin and type distinctly influence claim size and probability. This distinct impact is not always present in the Tweedie estimated model. Auto insurers should consider estimating total claim size using both the Tweedie and ZAIG methods. This allows for an estimation of confidence interval based on empirical quantiles using bootstrap simulation. Furthermore, the fitted models may be useful in developing a strategy to obtain premium pricing.
publishDate 2011
dc.date.none.fl_str_mv 2011-03-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-76922011000100004
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1807-76922011000100004
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/S1807-76922011000100004
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv ANPAD - Associação Nacional de Pós-Graduação e Pesquisa em Administração
publisher.none.fl_str_mv ANPAD - Associação Nacional de Pós-Graduação e Pesquisa em Administração
dc.source.none.fl_str_mv BAR - Brazilian Administration Review v.8 n.1 2011
reponame:BAR - Brazilian Administration Review
instname:Associação Nacional de Pós-Graduação e Pesquisa em Administração (ANPAD)
instacron:ANPAD
instname_str Associação Nacional de Pós-Graduação e Pesquisa em Administração (ANPAD)
instacron_str ANPAD
institution ANPAD
reponame_str BAR - Brazilian Administration Review
collection BAR - Brazilian Administration Review
repository.name.fl_str_mv BAR - Brazilian Administration Review - Associação Nacional de Pós-Graduação e Pesquisa em Administração (ANPAD)
repository.mail.fl_str_mv ||bar@anpad.org.br
_version_ 1754209123261480960