A GARCH Tutorial with R
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | RAC. Revista de Administração Contemporânea (Online) |
Texto Completo: | http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-65552021000100503 |
Resumo: | ABSTRACT Context: modeling volatility is an advanced technique in financial econometrics, with several applications for academic research. Objective: in this tutorial paper, we will address the topic of volatility modeling in R. We will discuss the underlying logic of GARCH models, their representation and estimation process, along with a descriptive example of a real-world application of volatility modeling. Methods: we use a GARCH model to predict how much time it will take, after the latest crisis, for the Ibovespa index to reach its historical peak once again. The empirical data covers the period between years 2000 and 2020, including the 2009 financial crisis and the current 2020’s episode of the COVID-19 pandemic. Conclusion: we find that, according to our GARCH model, Ibovespa is more likely than not to reach its peak once again in one year and four months from June 2020. All data and R code used to produce this tutorial are freely available on the internet and all results can be easily replicated. |
id |
ANPPGA-1_ae4ab1c242eba767eb0168dd4c2bb1cc |
---|---|
oai_identifier_str |
oai:scielo:S1415-65552021000100503 |
network_acronym_str |
ANPPGA-1 |
network_name_str |
RAC. Revista de Administração Contemporânea (Online) |
repository_id_str |
|
spelling |
A GARCH Tutorial with RvolatilityGARCHIbovespatutorialABSTRACT Context: modeling volatility is an advanced technique in financial econometrics, with several applications for academic research. Objective: in this tutorial paper, we will address the topic of volatility modeling in R. We will discuss the underlying logic of GARCH models, their representation and estimation process, along with a descriptive example of a real-world application of volatility modeling. Methods: we use a GARCH model to predict how much time it will take, after the latest crisis, for the Ibovespa index to reach its historical peak once again. The empirical data covers the period between years 2000 and 2020, including the 2009 financial crisis and the current 2020’s episode of the COVID-19 pandemic. Conclusion: we find that, according to our GARCH model, Ibovespa is more likely than not to reach its peak once again in one year and four months from June 2020. All data and R code used to produce this tutorial are freely available on the internet and all results can be easily replicated.Associação Nacional de Pós-Graduação e Pesquisa em Administração2021-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-65552021000100503Revista de Administração Contemporânea v.25 n.1 2021reponame:RAC. Revista de Administração Contemporânea (Online)instname:Associação Nacional de Pós-Graduação e Pesquisa em Administração (ANPAD)instacron:ANPAD10.1590/1982-7849rac2021200088info:eu-repo/semantics/openAccessPerlin,Marcelo SchererMastella,MauroVancin,Daniel FranciscoRamos,Henrique Pintoeng2020-10-16T00:00:00Zoai:scielo:S1415-65552021000100503Revistahttps://rac.anpad.org.br/index.php/racONGhttps://rac.anpad.org.br/index.php/rac/oairac@anpad.org.br1982-78491415-6555opendoar:2020-10-16T00:00RAC. Revista de Administração Contemporânea (Online) - Associação Nacional de Pós-Graduação e Pesquisa em Administração (ANPAD)false |
dc.title.none.fl_str_mv |
A GARCH Tutorial with R |
title |
A GARCH Tutorial with R |
spellingShingle |
A GARCH Tutorial with R Perlin,Marcelo Scherer volatility GARCH Ibovespa tutorial |
title_short |
A GARCH Tutorial with R |
title_full |
A GARCH Tutorial with R |
title_fullStr |
A GARCH Tutorial with R |
title_full_unstemmed |
A GARCH Tutorial with R |
title_sort |
A GARCH Tutorial with R |
author |
Perlin,Marcelo Scherer |
author_facet |
Perlin,Marcelo Scherer Mastella,Mauro Vancin,Daniel Francisco Ramos,Henrique Pinto |
author_role |
author |
author2 |
Mastella,Mauro Vancin,Daniel Francisco Ramos,Henrique Pinto |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Perlin,Marcelo Scherer Mastella,Mauro Vancin,Daniel Francisco Ramos,Henrique Pinto |
dc.subject.por.fl_str_mv |
volatility GARCH Ibovespa tutorial |
topic |
volatility GARCH Ibovespa tutorial |
description |
ABSTRACT Context: modeling volatility is an advanced technique in financial econometrics, with several applications for academic research. Objective: in this tutorial paper, we will address the topic of volatility modeling in R. We will discuss the underlying logic of GARCH models, their representation and estimation process, along with a descriptive example of a real-world application of volatility modeling. Methods: we use a GARCH model to predict how much time it will take, after the latest crisis, for the Ibovespa index to reach its historical peak once again. The empirical data covers the period between years 2000 and 2020, including the 2009 financial crisis and the current 2020’s episode of the COVID-19 pandemic. Conclusion: we find that, according to our GARCH model, Ibovespa is more likely than not to reach its peak once again in one year and four months from June 2020. All data and R code used to produce this tutorial are freely available on the internet and all results can be easily replicated. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-01-01 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-65552021000100503 |
url |
http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-65552021000100503 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
10.1590/1982-7849rac2021200088 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
text/html |
dc.publisher.none.fl_str_mv |
Associação Nacional de Pós-Graduação e Pesquisa em Administração |
publisher.none.fl_str_mv |
Associação Nacional de Pós-Graduação e Pesquisa em Administração |
dc.source.none.fl_str_mv |
Revista de Administração Contemporânea v.25 n.1 2021 reponame:RAC. Revista de Administração Contemporânea (Online) instname:Associação Nacional de Pós-Graduação e Pesquisa em Administração (ANPAD) instacron:ANPAD |
instname_str |
Associação Nacional de Pós-Graduação e Pesquisa em Administração (ANPAD) |
instacron_str |
ANPAD |
institution |
ANPAD |
reponame_str |
RAC. Revista de Administração Contemporânea (Online) |
collection |
RAC. Revista de Administração Contemporânea (Online) |
repository.name.fl_str_mv |
RAC. Revista de Administração Contemporânea (Online) - Associação Nacional de Pós-Graduação e Pesquisa em Administração (ANPAD) |
repository.mail.fl_str_mv |
rac@anpad.org.br |
_version_ |
1754209053768155136 |