A GARCH Tutorial with R

Detalhes bibliográficos
Autor(a) principal: Perlin,Marcelo Scherer
Data de Publicação: 2021
Outros Autores: Mastella,Mauro, Vancin,Daniel Francisco, Ramos,Henrique Pinto
Tipo de documento: Artigo
Idioma: eng
Título da fonte: RAC. Revista de Administração Contemporânea (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-65552021000100503
Resumo: ABSTRACT Context: modeling volatility is an advanced technique in financial econometrics, with several applications for academic research. Objective: in this tutorial paper, we will address the topic of volatility modeling in R. We will discuss the underlying logic of GARCH models, their representation and estimation process, along with a descriptive example of a real-world application of volatility modeling. Methods: we use a GARCH model to predict how much time it will take, after the latest crisis, for the Ibovespa index to reach its historical peak once again. The empirical data covers the period between years 2000 and 2020, including the 2009 financial crisis and the current 2020’s episode of the COVID-19 pandemic. Conclusion: we find that, according to our GARCH model, Ibovespa is more likely than not to reach its peak once again in one year and four months from June 2020. All data and R code used to produce this tutorial are freely available on the internet and all results can be easily replicated.
id ANPPGA-1_ae4ab1c242eba767eb0168dd4c2bb1cc
oai_identifier_str oai:scielo:S1415-65552021000100503
network_acronym_str ANPPGA-1
network_name_str RAC. Revista de Administração Contemporânea (Online)
repository_id_str
spelling A GARCH Tutorial with RvolatilityGARCHIbovespatutorialABSTRACT Context: modeling volatility is an advanced technique in financial econometrics, with several applications for academic research. Objective: in this tutorial paper, we will address the topic of volatility modeling in R. We will discuss the underlying logic of GARCH models, their representation and estimation process, along with a descriptive example of a real-world application of volatility modeling. Methods: we use a GARCH model to predict how much time it will take, after the latest crisis, for the Ibovespa index to reach its historical peak once again. The empirical data covers the period between years 2000 and 2020, including the 2009 financial crisis and the current 2020’s episode of the COVID-19 pandemic. Conclusion: we find that, according to our GARCH model, Ibovespa is more likely than not to reach its peak once again in one year and four months from June 2020. All data and R code used to produce this tutorial are freely available on the internet and all results can be easily replicated.Associação Nacional de Pós-Graduação e Pesquisa em Administração2021-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-65552021000100503Revista de Administração Contemporânea v.25 n.1 2021reponame:RAC. Revista de Administração Contemporânea (Online)instname:Associação Nacional de Pós-Graduação e Pesquisa em Administração (ANPAD)instacron:ANPAD10.1590/1982-7849rac2021200088info:eu-repo/semantics/openAccessPerlin,Marcelo SchererMastella,MauroVancin,Daniel FranciscoRamos,Henrique Pintoeng2020-10-16T00:00:00Zoai:scielo:S1415-65552021000100503Revistahttps://rac.anpad.org.br/index.php/racONGhttps://rac.anpad.org.br/index.php/rac/oairac@anpad.org.br1982-78491415-6555opendoar:2020-10-16T00:00RAC. Revista de Administração Contemporânea (Online) - Associação Nacional de Pós-Graduação e Pesquisa em Administração (ANPAD)false
dc.title.none.fl_str_mv A GARCH Tutorial with R
title A GARCH Tutorial with R
spellingShingle A GARCH Tutorial with R
Perlin,Marcelo Scherer
volatility
GARCH
Ibovespa
tutorial
title_short A GARCH Tutorial with R
title_full A GARCH Tutorial with R
title_fullStr A GARCH Tutorial with R
title_full_unstemmed A GARCH Tutorial with R
title_sort A GARCH Tutorial with R
author Perlin,Marcelo Scherer
author_facet Perlin,Marcelo Scherer
Mastella,Mauro
Vancin,Daniel Francisco
Ramos,Henrique Pinto
author_role author
author2 Mastella,Mauro
Vancin,Daniel Francisco
Ramos,Henrique Pinto
author2_role author
author
author
dc.contributor.author.fl_str_mv Perlin,Marcelo Scherer
Mastella,Mauro
Vancin,Daniel Francisco
Ramos,Henrique Pinto
dc.subject.por.fl_str_mv volatility
GARCH
Ibovespa
tutorial
topic volatility
GARCH
Ibovespa
tutorial
description ABSTRACT Context: modeling volatility is an advanced technique in financial econometrics, with several applications for academic research. Objective: in this tutorial paper, we will address the topic of volatility modeling in R. We will discuss the underlying logic of GARCH models, their representation and estimation process, along with a descriptive example of a real-world application of volatility modeling. Methods: we use a GARCH model to predict how much time it will take, after the latest crisis, for the Ibovespa index to reach its historical peak once again. The empirical data covers the period between years 2000 and 2020, including the 2009 financial crisis and the current 2020’s episode of the COVID-19 pandemic. Conclusion: we find that, according to our GARCH model, Ibovespa is more likely than not to reach its peak once again in one year and four months from June 2020. All data and R code used to produce this tutorial are freely available on the internet and all results can be easily replicated.
publishDate 2021
dc.date.none.fl_str_mv 2021-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-65552021000100503
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S1415-65552021000100503
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/1982-7849rac2021200088
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Associação Nacional de Pós-Graduação e Pesquisa em Administração
publisher.none.fl_str_mv Associação Nacional de Pós-Graduação e Pesquisa em Administração
dc.source.none.fl_str_mv Revista de Administração Contemporânea v.25 n.1 2021
reponame:RAC. Revista de Administração Contemporânea (Online)
instname:Associação Nacional de Pós-Graduação e Pesquisa em Administração (ANPAD)
instacron:ANPAD
instname_str Associação Nacional de Pós-Graduação e Pesquisa em Administração (ANPAD)
instacron_str ANPAD
institution ANPAD
reponame_str RAC. Revista de Administração Contemporânea (Online)
collection RAC. Revista de Administração Contemporânea (Online)
repository.name.fl_str_mv RAC. Revista de Administração Contemporânea (Online) - Associação Nacional de Pós-Graduação e Pesquisa em Administração (ANPAD)
repository.mail.fl_str_mv rac@anpad.org.br
_version_ 1754209053768155136