Data analytics applied to the analysis of petroleum production in Brazil / Análise de dados aplicada à análise da produção de petróleo no Brasil
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Brazilian Applied Science Review |
Texto Completo: | https://ojs.brazilianjournals.com.br/ojs/index.php/BASR/article/view/26969 |
Resumo: | We mine the set of data provided by the ANP (Agência Nacional do Petróleo e Gás - National Oil and Gas Agency), of petroleum production and distribution in Brazilian territory. We use modern data science techniques to collect, analyze, treat and model hydrocarbon production data from all production units operating in the period from February 2009 to 2020. We highlight the high production of hydrocarbons in the Brazilian territory related to the performance of Petrobras, responsible for about 95% of Brazilian production. We report the discovery of an apparent paradox: the Tupi field presents the highest daily production, however it is not the largest national producer, a position that belongs to the Marlim field, yet we present the data analytics techniques that we use to solve this paradox. |
id |
BASR-0_766903c98ac9e4831c2ac7ea97e4509f |
---|---|
oai_identifier_str |
oai:ojs2.ojs.brazilianjournals.com.br:article/26969 |
network_acronym_str |
BASR-0 |
network_name_str |
Brazilian Applied Science Review |
repository_id_str |
|
spelling |
Data analytics applied to the analysis of petroleum production in Brazil / Análise de dados aplicada à análise da produção de petróleo no BrasilData ScienceBusiness IntelligencePetroleum ProductionWe mine the set of data provided by the ANP (Agência Nacional do Petróleo e Gás - National Oil and Gas Agency), of petroleum production and distribution in Brazilian territory. We use modern data science techniques to collect, analyze, treat and model hydrocarbon production data from all production units operating in the period from February 2009 to 2020. We highlight the high production of hydrocarbons in the Brazilian territory related to the performance of Petrobras, responsible for about 95% of Brazilian production. We report the discovery of an apparent paradox: the Tupi field presents the highest daily production, however it is not the largest national producer, a position that belongs to the Marlim field, yet we present the data analytics techniques that we use to solve this paradox.Brazilian Journals Publicações de Periódicos e Editora Ltda.2021-03-24info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://ojs.brazilianjournals.com.br/ojs/index.php/BASR/article/view/2696910.34115/basrv5n2-015Brazilian Applied Science Review; Vol. 5 No. 2 (2021); 818-835Brazilian Applied Science Review; v. 5 n. 2 (2021); 818-8352595-36212595-362110.34115/basr.v5i2reponame:Brazilian Applied Science Reviewinstname:Brazilian Journals Publicações de Periódicos e Editora Ltdainstacron:FIEPporhttps://ojs.brazilianjournals.com.br/ojs/index.php/BASR/article/view/26969/21332Copyright (c) 2021 Brazilian Applied Science Reviewinfo:eu-repo/semantics/openAccessLeal, Alessandra BritoMoura, Thiago Rafael da Silva2021-04-28T16:37:23Zoai:ojs2.ojs.brazilianjournals.com.br:article/26969Revistahttps://www.brazilianjournals.com/index.php/BASRPRIhttps://ojs.brazilianjournals.com.br/ojs/index.php/BASR/oaibrazilianasr@yahoo.com || brazilianasr@yahoo.com2595-36212595-3621opendoar:2021-04-28T16:37:23Brazilian Applied Science Review - Brazilian Journals Publicações de Periódicos e Editora Ltdafalse |
dc.title.none.fl_str_mv |
Data analytics applied to the analysis of petroleum production in Brazil / Análise de dados aplicada à análise da produção de petróleo no Brasil |
title |
Data analytics applied to the analysis of petroleum production in Brazil / Análise de dados aplicada à análise da produção de petróleo no Brasil |
spellingShingle |
Data analytics applied to the analysis of petroleum production in Brazil / Análise de dados aplicada à análise da produção de petróleo no Brasil Leal, Alessandra Brito Data Science Business Intelligence Petroleum Production |
title_short |
Data analytics applied to the analysis of petroleum production in Brazil / Análise de dados aplicada à análise da produção de petróleo no Brasil |
title_full |
Data analytics applied to the analysis of petroleum production in Brazil / Análise de dados aplicada à análise da produção de petróleo no Brasil |
title_fullStr |
Data analytics applied to the analysis of petroleum production in Brazil / Análise de dados aplicada à análise da produção de petróleo no Brasil |
title_full_unstemmed |
Data analytics applied to the analysis of petroleum production in Brazil / Análise de dados aplicada à análise da produção de petróleo no Brasil |
title_sort |
Data analytics applied to the analysis of petroleum production in Brazil / Análise de dados aplicada à análise da produção de petróleo no Brasil |
author |
Leal, Alessandra Brito |
author_facet |
Leal, Alessandra Brito Moura, Thiago Rafael da Silva |
author_role |
author |
author2 |
Moura, Thiago Rafael da Silva |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Leal, Alessandra Brito Moura, Thiago Rafael da Silva |
dc.subject.por.fl_str_mv |
Data Science Business Intelligence Petroleum Production |
topic |
Data Science Business Intelligence Petroleum Production |
description |
We mine the set of data provided by the ANP (Agência Nacional do Petróleo e Gás - National Oil and Gas Agency), of petroleum production and distribution in Brazilian territory. We use modern data science techniques to collect, analyze, treat and model hydrocarbon production data from all production units operating in the period from February 2009 to 2020. We highlight the high production of hydrocarbons in the Brazilian territory related to the performance of Petrobras, responsible for about 95% of Brazilian production. We report the discovery of an apparent paradox: the Tupi field presents the highest daily production, however it is not the largest national producer, a position that belongs to the Marlim field, yet we present the data analytics techniques that we use to solve this paradox. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-03-24 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://ojs.brazilianjournals.com.br/ojs/index.php/BASR/article/view/26969 10.34115/basrv5n2-015 |
url |
https://ojs.brazilianjournals.com.br/ojs/index.php/BASR/article/view/26969 |
identifier_str_mv |
10.34115/basrv5n2-015 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://ojs.brazilianjournals.com.br/ojs/index.php/BASR/article/view/26969/21332 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2021 Brazilian Applied Science Review info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2021 Brazilian Applied Science Review |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Brazilian Journals Publicações de Periódicos e Editora Ltda. |
publisher.none.fl_str_mv |
Brazilian Journals Publicações de Periódicos e Editora Ltda. |
dc.source.none.fl_str_mv |
Brazilian Applied Science Review; Vol. 5 No. 2 (2021); 818-835 Brazilian Applied Science Review; v. 5 n. 2 (2021); 818-835 2595-3621 2595-3621 10.34115/basr.v5i2 reponame:Brazilian Applied Science Review instname:Brazilian Journals Publicações de Periódicos e Editora Ltda instacron:FIEP |
instname_str |
Brazilian Journals Publicações de Periódicos e Editora Ltda |
instacron_str |
FIEP |
institution |
FIEP |
reponame_str |
Brazilian Applied Science Review |
collection |
Brazilian Applied Science Review |
repository.name.fl_str_mv |
Brazilian Applied Science Review - Brazilian Journals Publicações de Periódicos e Editora Ltda |
repository.mail.fl_str_mv |
brazilianasr@yahoo.com || brazilianasr@yahoo.com |
_version_ |
1797240008149565440 |