Artifical intelligence and nuclear cardiology - a current overview / Inteligência artifical e cardiologia nuclear – um panorama atual
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Brazilian Journal of Health Review |
Texto Completo: | https://ojs.brazilianjournals.com.br/ojs/index.php/BJHR/article/view/27838 |
Resumo: | The aim of this article is to analyze the current overview of machine learning applied to cardiac imaging in nuclear medicine through a review of the recent literature. In recent years, new highly efficient artificial intelligence tools are revolutionizing the field of image analysis, being developed with the purpose of integrating the large volume of clinical and image information to improve the diagnosis of the disease and the risk estimate. The integration of artificial intelligence in daily clinical practice is being evaluated on several fronts and nuclear cardiology can benefit from the improvement in sensitivity, specificity, and diagnostic accuracy that the incorporation of these technologies can provide. |
id |
BJRH-0_7e0b3c872ce6b39120e4f062fe23c5ad |
---|---|
oai_identifier_str |
oai:ojs2.ojs.brazilianjournals.com.br:article/27838 |
network_acronym_str |
BJRH-0 |
network_name_str |
Brazilian Journal of Health Review |
repository_id_str |
|
spelling |
Artifical intelligence and nuclear cardiology - a current overview / Inteligência artifical e cardiologia nuclear – um panorama atualArtificial IntelligenceCardiologyNuclear MedicineRadiology.The aim of this article is to analyze the current overview of machine learning applied to cardiac imaging in nuclear medicine through a review of the recent literature. In recent years, new highly efficient artificial intelligence tools are revolutionizing the field of image analysis, being developed with the purpose of integrating the large volume of clinical and image information to improve the diagnosis of the disease and the risk estimate. The integration of artificial intelligence in daily clinical practice is being evaluated on several fronts and nuclear cardiology can benefit from the improvement in sensitivity, specificity, and diagnostic accuracy that the incorporation of these technologies can provide. Brazilian Journals Publicações de Periódicos e Editora Ltda.2021-04-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://ojs.brazilianjournals.com.br/ojs/index.php/BJHR/article/view/2783810.34119/bjhrv4n2-304Brazilian Journal of Health Review; Vol. 4 No. 2 (2021); 7678-7682Brazilian Journal of Health Review; v. 4 n. 2 (2021); 7678-76822595-6825reponame:Brazilian Journal of Health Reviewinstname:Federação das Indústrias do Estado do Paraná (FIEP)instacron:BJRHporhttps://ojs.brazilianjournals.com.br/ojs/index.php/BJHR/article/view/27838/22031Copyright (c) 2021 Brazilian Journal of Health Reviewinfo:eu-repo/semantics/openAccessMascarenhas, Amanda Sofia SilvaSilva, Marcelo Moreira daBarra, Renato Ramos2021-05-31T22:30:55Zoai:ojs2.ojs.brazilianjournals.com.br:article/27838Revistahttp://www.brazilianjournals.com/index.php/BJHR/indexPRIhttps://ojs.brazilianjournals.com.br/ojs/index.php/BJHR/oai|| brazilianjhr@gmail.com2595-68252595-6825opendoar:2021-05-31T22:30:55Brazilian Journal of Health Review - Federação das Indústrias do Estado do Paraná (FIEP)false |
dc.title.none.fl_str_mv |
Artifical intelligence and nuclear cardiology - a current overview / Inteligência artifical e cardiologia nuclear – um panorama atual |
title |
Artifical intelligence and nuclear cardiology - a current overview / Inteligência artifical e cardiologia nuclear – um panorama atual |
spellingShingle |
Artifical intelligence and nuclear cardiology - a current overview / Inteligência artifical e cardiologia nuclear – um panorama atual Mascarenhas, Amanda Sofia Silva Artificial Intelligence Cardiology Nuclear Medicine Radiology. |
title_short |
Artifical intelligence and nuclear cardiology - a current overview / Inteligência artifical e cardiologia nuclear – um panorama atual |
title_full |
Artifical intelligence and nuclear cardiology - a current overview / Inteligência artifical e cardiologia nuclear – um panorama atual |
title_fullStr |
Artifical intelligence and nuclear cardiology - a current overview / Inteligência artifical e cardiologia nuclear – um panorama atual |
title_full_unstemmed |
Artifical intelligence and nuclear cardiology - a current overview / Inteligência artifical e cardiologia nuclear – um panorama atual |
title_sort |
Artifical intelligence and nuclear cardiology - a current overview / Inteligência artifical e cardiologia nuclear – um panorama atual |
author |
Mascarenhas, Amanda Sofia Silva |
author_facet |
Mascarenhas, Amanda Sofia Silva Silva, Marcelo Moreira da Barra, Renato Ramos |
author_role |
author |
author2 |
Silva, Marcelo Moreira da Barra, Renato Ramos |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Mascarenhas, Amanda Sofia Silva Silva, Marcelo Moreira da Barra, Renato Ramos |
dc.subject.por.fl_str_mv |
Artificial Intelligence Cardiology Nuclear Medicine Radiology. |
topic |
Artificial Intelligence Cardiology Nuclear Medicine Radiology. |
description |
The aim of this article is to analyze the current overview of machine learning applied to cardiac imaging in nuclear medicine through a review of the recent literature. In recent years, new highly efficient artificial intelligence tools are revolutionizing the field of image analysis, being developed with the purpose of integrating the large volume of clinical and image information to improve the diagnosis of the disease and the risk estimate. The integration of artificial intelligence in daily clinical practice is being evaluated on several fronts and nuclear cardiology can benefit from the improvement in sensitivity, specificity, and diagnostic accuracy that the incorporation of these technologies can provide. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-04-07 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://ojs.brazilianjournals.com.br/ojs/index.php/BJHR/article/view/27838 10.34119/bjhrv4n2-304 |
url |
https://ojs.brazilianjournals.com.br/ojs/index.php/BJHR/article/view/27838 |
identifier_str_mv |
10.34119/bjhrv4n2-304 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://ojs.brazilianjournals.com.br/ojs/index.php/BJHR/article/view/27838/22031 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2021 Brazilian Journal of Health Review info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2021 Brazilian Journal of Health Review |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Brazilian Journals Publicações de Periódicos e Editora Ltda. |
publisher.none.fl_str_mv |
Brazilian Journals Publicações de Periódicos e Editora Ltda. |
dc.source.none.fl_str_mv |
Brazilian Journal of Health Review; Vol. 4 No. 2 (2021); 7678-7682 Brazilian Journal of Health Review; v. 4 n. 2 (2021); 7678-7682 2595-6825 reponame:Brazilian Journal of Health Review instname:Federação das Indústrias do Estado do Paraná (FIEP) instacron:BJRH |
instname_str |
Federação das Indústrias do Estado do Paraná (FIEP) |
instacron_str |
BJRH |
institution |
BJRH |
reponame_str |
Brazilian Journal of Health Review |
collection |
Brazilian Journal of Health Review |
repository.name.fl_str_mv |
Brazilian Journal of Health Review - Federação das Indústrias do Estado do Paraná (FIEP) |
repository.mail.fl_str_mv |
|| brazilianjhr@gmail.com |
_version_ |
1797240061549346816 |