Non-hyperbolic Iterated Function Systems: attractors, stationary measures, and step skew products

Detalhes bibliográficos
Autor(a) principal: EDGAR MATIAS DA SILVA
Data de Publicação: 2016
Tipo de documento: Tese
Título da fonte: Portal de Dados Abertos da CAPES
Texto Completo: https://sucupira.capes.gov.br/sucupira/public/consultas/coleta/trabalhoConclusao/viewTrabalhoConclusao.jsf?popup=true&id_trabalho=4630037
id BRCRIS_3cb8a260691bfa934e6b39cfdb15b5ce
network_acronym_str CAPES
network_name_str Portal de Dados Abertos da CAPES
dc.title.pt-BR.fl_str_mv Non-hyperbolic Iterated Function Systems: attractors, stationary measures, and step skew products
title Non-hyperbolic Iterated Function Systems: attractors, stationary measures, and step skew products
spellingShingle Non-hyperbolic Iterated Function Systems: attractors, stationary measures, and step skew products
Chaos game
Jogo do caos
EDGAR MATIAS DA SILVA
title_short Non-hyperbolic Iterated Function Systems: attractors, stationary measures, and step skew products
title_full Non-hyperbolic Iterated Function Systems: attractors, stationary measures, and step skew products
title_fullStr Non-hyperbolic Iterated Function Systems: attractors, stationary measures, and step skew products
Non-hyperbolic Iterated Function Systems: attractors, stationary measures, and step skew products
title_full_unstemmed Non-hyperbolic Iterated Function Systems: attractors, stationary measures, and step skew products
Non-hyperbolic Iterated Function Systems: attractors, stationary measures, and step skew products
title_sort Non-hyperbolic Iterated Function Systems: attractors, stationary measures, and step skew products
topic Chaos game
Jogo do caos
publishDate 2016
format doctoralThesis
url https://sucupira.capes.gov.br/sucupira/public/consultas/coleta/trabalhoConclusao/viewTrabalhoConclusao.jsf?popup=true&id_trabalho=4630037
author_role author
author EDGAR MATIAS DA SILVA
author_facet EDGAR MATIAS DA SILVA
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/8819986646476415
dc.contributor.advisor1.fl_str_mv Lorenzo Justiniano Diaz Casado
LORENZO JUSTINIANO DIAZ CASADO
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/2522219947489545
dc.publisher.none.fl_str_mv PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO
publisher.none.fl_str_mv PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO
instname_str PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO
dc.publisher.program.fl_str_mv MATEMÁTICA
dc.description.course.none.fl_txt_mv MATEMÁTICA
reponame_str Portal de Dados Abertos da CAPES
collection Portal de Dados Abertos da CAPES
spelling CAPESPortal de Dados Abertos da CAPESNon-hyperbolic Iterated Function Systems: attractors, stationary measures, and step skew productsNon-hyperbolic Iterated Function Systems: attractors, stationary measures, and step skew productsNon-hyperbolic Iterated Function Systems: attractors, stationary measures, and step skew productsNon-hyperbolic Iterated Function Systems: attractors, stationary measures, and step skew productsNon-hyperbolic Iterated Function Systems: attractors, stationary measures, and step skew productsNon-hyperbolic Iterated Function Systems: attractors, stationary measures, and step skew productsNon-hyperbolic Iterated Function Systems: attractors, stationary measures, and step skew productsChaos game2016doctoralThesishttps://sucupira.capes.gov.br/sucupira/public/consultas/coleta/trabalhoConclusao/viewTrabalhoConclusao.jsf?popup=true&id_trabalho=4630037authorEDGAR MATIAS DA SILVAhttp://lattes.cnpq.br/8819986646476415Lorenzo Justiniano Diaz Casadohttp://lattes.cnpq.br/2522219947489545PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIROPONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIROPONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIROMATEMÁTICAMATEMÁTICAPortal de Dados Abertos da CAPESPortal de Dados Abertos da CAPES
identifier_str_mv SILVA, EDGAR MATIAS DA. Non-hyperbolic Iterated Function Systems: attractors, stationary measures, and step skew products. 2016. Tese.
dc.identifier.citation.fl_str_mv SILVA, EDGAR MATIAS DA. Non-hyperbolic Iterated Function Systems: attractors, stationary measures, and step skew products. 2016. Tese.
_version_ 1741883377400676352