On weakly hyperbolic iterated function systems

Detalhes bibliográficos
Autor(a) principal: Correa, André Junqueira da Silva
Data de Publicação: 2017
Outros Autores: Arbieto, Alexander, Santiago, Bruno
Tipo de documento: Artigo
Idioma: eng
Título da fonte: LOCUS Repositório Institucional da UFV
Texto Completo: https://doi.org/10.1007/s00574-016-0018-4
http://www.locus.ufv.br/handle/123456789/21893
Resumo: We study weakly hyperbolic iterated function systems on compact metric spaces, as defined by Edalat (Inform Comput 124(2):182–197, 1996), but in the more general setting of compact parameter space. We prove the existence of attractors, both in the topological and measure theoretical viewpoint and the ergodicity of invariant measure. We also define weakly hyperbolic iterated function systems for complete metric spaces and compact parameter space, extending the above mentioned definition. Furthermore, we study the question of existence of attractors in this setting. Finally, we prove a version of the results by Barnsley and Vince (Ergodic Theory Dyn Syst 31(4):1073–1079, 2011), about drawing the attractor (the so-called the chaos game), for compact parameter space.
id UFV_946de15c50fe887a9695e034e5a7efba
oai_identifier_str oai:locus.ufv.br:123456789/21893
network_acronym_str UFV
network_name_str LOCUS Repositório Institucional da UFV
repository_id_str 2145
spelling Correa, André Junqueira da SilvaArbieto, AlexanderSantiago, Bruno2018-09-20T10:46:24Z2018-09-20T10:46:24Z2017-031678-7714https://doi.org/10.1007/s00574-016-0018-4http://www.locus.ufv.br/handle/123456789/21893We study weakly hyperbolic iterated function systems on compact metric spaces, as defined by Edalat (Inform Comput 124(2):182–197, 1996), but in the more general setting of compact parameter space. We prove the existence of attractors, both in the topological and measure theoretical viewpoint and the ergodicity of invariant measure. We also define weakly hyperbolic iterated function systems for complete metric spaces and compact parameter space, extending the above mentioned definition. Furthermore, we study the question of existence of attractors in this setting. Finally, we prove a version of the results by Barnsley and Vince (Ergodic Theory Dyn Syst 31(4):1073–1079, 2011), about drawing the attractor (the so-called the chaos game), for compact parameter space.engBulletin of the Brazilian Mathematical Society, New SeriesVolume 48, Issue 1, p. 111–140, March 2017Elsevier B.V.info:eu-repo/semantics/openAccessIterated function systemsAttractorsChaos gameOn weakly hyperbolic iterated function systemsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALartigo.pdfartigo.pdfTexto completoapplication/pdf639851https://locus.ufv.br//bitstream/123456789/21893/1/artigo.pdf88c314c419fa4e5a6ae7a7702ebbb1a3MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/21893/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILartigo.pdf.jpgartigo.pdf.jpgIM Thumbnailimage/jpeg4629https://locus.ufv.br//bitstream/123456789/21893/3/artigo.pdf.jpg0369726ca1eceeefe50faf64a3f16969MD53123456789/218932018-09-20 23:00:35.418oai:locus.ufv.br:123456789/21893Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452018-09-21T02:00:35LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false
dc.title.en.fl_str_mv On weakly hyperbolic iterated function systems
title On weakly hyperbolic iterated function systems
spellingShingle On weakly hyperbolic iterated function systems
Correa, André Junqueira da Silva
Iterated function systems
Attractors
Chaos game
title_short On weakly hyperbolic iterated function systems
title_full On weakly hyperbolic iterated function systems
title_fullStr On weakly hyperbolic iterated function systems
title_full_unstemmed On weakly hyperbolic iterated function systems
title_sort On weakly hyperbolic iterated function systems
author Correa, André Junqueira da Silva
author_facet Correa, André Junqueira da Silva
Arbieto, Alexander
Santiago, Bruno
author_role author
author2 Arbieto, Alexander
Santiago, Bruno
author2_role author
author
dc.contributor.author.fl_str_mv Correa, André Junqueira da Silva
Arbieto, Alexander
Santiago, Bruno
dc.subject.pt-BR.fl_str_mv Iterated function systems
Attractors
Chaos game
topic Iterated function systems
Attractors
Chaos game
description We study weakly hyperbolic iterated function systems on compact metric spaces, as defined by Edalat (Inform Comput 124(2):182–197, 1996), but in the more general setting of compact parameter space. We prove the existence of attractors, both in the topological and measure theoretical viewpoint and the ergodicity of invariant measure. We also define weakly hyperbolic iterated function systems for complete metric spaces and compact parameter space, extending the above mentioned definition. Furthermore, we study the question of existence of attractors in this setting. Finally, we prove a version of the results by Barnsley and Vince (Ergodic Theory Dyn Syst 31(4):1073–1079, 2011), about drawing the attractor (the so-called the chaos game), for compact parameter space.
publishDate 2017
dc.date.issued.fl_str_mv 2017-03
dc.date.accessioned.fl_str_mv 2018-09-20T10:46:24Z
dc.date.available.fl_str_mv 2018-09-20T10:46:24Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://doi.org/10.1007/s00574-016-0018-4
http://www.locus.ufv.br/handle/123456789/21893
dc.identifier.issn.none.fl_str_mv 1678-7714
identifier_str_mv 1678-7714
url https://doi.org/10.1007/s00574-016-0018-4
http://www.locus.ufv.br/handle/123456789/21893
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartofseries.pt-BR.fl_str_mv Volume 48, Issue 1, p. 111–140, March 2017
dc.rights.driver.fl_str_mv Elsevier B.V.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Elsevier B.V.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Bulletin of the Brazilian Mathematical Society, New Series
publisher.none.fl_str_mv Bulletin of the Brazilian Mathematical Society, New Series
dc.source.none.fl_str_mv reponame:LOCUS Repositório Institucional da UFV
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str LOCUS Repositório Institucional da UFV
collection LOCUS Repositório Institucional da UFV
bitstream.url.fl_str_mv https://locus.ufv.br//bitstream/123456789/21893/1/artigo.pdf
https://locus.ufv.br//bitstream/123456789/21893/2/license.txt
https://locus.ufv.br//bitstream/123456789/21893/3/artigo.pdf.jpg
bitstream.checksum.fl_str_mv 88c314c419fa4e5a6ae7a7702ebbb1a3
8a4605be74aa9ea9d79846c1fba20a33
0369726ca1eceeefe50faf64a3f16969
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv fabiojreis@ufv.br
_version_ 1801213017151504384