Applications of graded manifolds to Poisson geometry.

Detalhes bibliográficos
Autor(a) principal: MIGUEL CUECA TEN
Data de Publicação: 2019
Tipo de documento: Tese
Título da fonte: Portal de Dados Abertos da CAPES
Texto Completo: https://sucupira.capes.gov.br/sucupira/public/consultas/coleta/trabalhoConclusao/viewTrabalhoConclusao.jsf?popup=true&id_trabalho=7701861
id BRCRIS_5207920255dcb198481db444360ab0df
network_acronym_str CAPES
network_name_str Portal de Dados Abertos da CAPES
dc.title.pt-BR.fl_str_mv Applications of graded manifolds to Poisson geometry.
title Applications of graded manifolds to Poisson geometry.
spellingShingle Applications of graded manifolds to Poisson geometry.
Geometria de Poisson, algebroide de Lie, Q-Variedades Simpléticas
Lie algebroid, Higher Geometries Frobenius Theorem
MIGUEL CUECA TEN
title_short Applications of graded manifolds to Poisson geometry.
title_full Applications of graded manifolds to Poisson geometry.
title_fullStr Applications of graded manifolds to Poisson geometry.
Applications of graded manifolds to Poisson geometry.
title_full_unstemmed Applications of graded manifolds to Poisson geometry.
Applications of graded manifolds to Poisson geometry.
title_sort Applications of graded manifolds to Poisson geometry.
topic Geometria de Poisson, algebroide de Lie, Q-Variedades Simpléticas
Lie algebroid, Higher Geometries Frobenius Theorem
publishDate 2019
format doctoralThesis
url https://sucupira.capes.gov.br/sucupira/public/consultas/coleta/trabalhoConclusao/viewTrabalhoConclusao.jsf?popup=true&id_trabalho=7701861
author_role author
author MIGUEL CUECA TEN
author_facet MIGUEL CUECA TEN
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/4775495092363365
dc.contributor.advisor1.fl_str_mv HENRIQUE BURSZTYN
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/8990840386121636
dc.publisher.none.fl_str_mv ASSOCIAÇÃO INSTITUTO NACIONAL DE MATEMÁTICA PURA E APLICADA
publisher.none.fl_str_mv ASSOCIAÇÃO INSTITUTO NACIONAL DE MATEMÁTICA PURA E APLICADA
instname_str ASSOCIAÇÃO INSTITUTO NACIONAL DE MATEMÁTICA PURA E APLICADA
dc.publisher.program.fl_str_mv MATEMÁTICA
dc.description.course.none.fl_txt_mv MATEMÁTICA
reponame_str Portal de Dados Abertos da CAPES
collection Portal de Dados Abertos da CAPES
spelling CAPESPortal de Dados Abertos da CAPESApplications of graded manifolds to Poisson geometry.Applications of graded manifolds to Poisson geometry.Applications of graded manifolds to Poisson geometry.Applications of graded manifolds to Poisson geometry.Applications of graded manifolds to Poisson geometry.Applications of graded manifolds to Poisson geometry.Applications of graded manifolds to Poisson geometry.Geometria de Poisson, algebroide de Lie, Q-Variedades Simpléticas2019doctoralThesishttps://sucupira.capes.gov.br/sucupira/public/consultas/coleta/trabalhoConclusao/viewTrabalhoConclusao.jsf?popup=true&id_trabalho=7701861authorMIGUEL CUECA TENhttp://lattes.cnpq.br/4775495092363365HENRIQUE BURSZTYNhttp://lattes.cnpq.br/8990840386121636ASSOCIAÇÃO INSTITUTO NACIONAL DE MATEMÁTICA PURA E APLICADAASSOCIAÇÃO INSTITUTO NACIONAL DE MATEMÁTICA PURA E APLICADAASSOCIAÇÃO INSTITUTO NACIONAL DE MATEMÁTICA PURA E APLICADAMATEMÁTICAMATEMÁTICAPortal de Dados Abertos da CAPESPortal de Dados Abertos da CAPES
identifier_str_mv TEN, MIGUEL CUECA. Applications of graded manifolds to Poisson geometry.. 2019. Tese.
dc.identifier.citation.fl_str_mv TEN, MIGUEL CUECA. Applications of graded manifolds to Poisson geometry.. 2019. Tese.
_version_ 1741884908923518976