New Exact Algorithms for Planar Maximum Covering Location by Ellipses Problems
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Dissertação |
Título da fonte: | Portal de Dados Abertos da CAPES |
Texto Completo: | https://sucupira.capes.gov.br/sucupira/public/consultas/coleta/trabalhoConclusao/viewTrabalhoConclusao.jsf?popup=true&id_trabalho=9247287 |
id |
BRCRIS_77836b5da05e18e5ff5e775824a081fd |
---|---|
network_acronym_str |
CAPES |
network_name_str |
Portal de Dados Abertos da CAPES |
dc.title.pt-BR.fl_str_mv |
New Exact Algorithms for Planar Maximum Covering Location by Ellipses Problems |
title |
New Exact Algorithms for Planar Maximum Covering Location by Ellipses Problems |
spellingShingle |
New Exact Algorithms for Planar Maximum Covering Location by Ellipses Problems Geometric Computation Geometria Computacional Danilo Françoso Tedeschi |
title_short |
New Exact Algorithms for Planar Maximum Covering Location by Ellipses Problems |
title_full |
New Exact Algorithms for Planar Maximum Covering Location by Ellipses Problems |
title_fullStr |
New Exact Algorithms for Planar Maximum Covering Location by Ellipses Problems New Exact Algorithms for Planar Maximum Covering Location by Ellipses Problems |
title_full_unstemmed |
New Exact Algorithms for Planar Maximum Covering Location by Ellipses Problems New Exact Algorithms for Planar Maximum Covering Location by Ellipses Problems |
title_sort |
New Exact Algorithms for Planar Maximum Covering Location by Ellipses Problems |
topic |
Geometric Computation Geometria Computacional |
publishDate |
2020 |
format |
masterThesis |
url |
https://sucupira.capes.gov.br/sucupira/public/consultas/coleta/trabalhoConclusao/viewTrabalhoConclusao.jsf?popup=true&id_trabalho=9247287 |
author_role |
author |
author |
Danilo Françoso Tedeschi |
author_facet |
Danilo Françoso Tedeschi |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/5518630756781848 |
dc.contributor.advisor1.fl_str_mv |
MARINA ANDRETTA |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/2046970162506930 |
dc.contributor.advisor1orcid.por.fl_str_mv |
https://orcid.org/0000-0002-7068-6947 |
dc.publisher.none.fl_str_mv |
UNIVERSIDADE DE SÃO PAULO/SÃO CARLOS |
publisher.none.fl_str_mv |
UNIVERSIDADE DE SÃO PAULO/SÃO CARLOS |
instname_str |
UNIVERSIDADE DE SÃO PAULO/SÃO CARLOS |
dc.publisher.program.fl_str_mv |
CIÊNCIAS DA COMPUTAÇÃO E MATEMÁTICA COMPUTACIONAL |
dc.description.course.none.fl_txt_mv |
CIÊNCIAS DA COMPUTAÇÃO E MATEMÁTICA COMPUTACIONAL |
reponame_str |
Portal de Dados Abertos da CAPES |
collection |
Portal de Dados Abertos da CAPES |
spelling |
CAPESPortal de Dados Abertos da CAPESNew Exact Algorithms for Planar Maximum Covering Location by Ellipses ProblemsNew Exact Algorithms for Planar Maximum Covering Location by Ellipses ProblemsNew Exact Algorithms for Planar Maximum Covering Location by Ellipses ProblemsNew Exact Algorithms for Planar Maximum Covering Location by Ellipses ProblemsNew Exact Algorithms for Planar Maximum Covering Location by Ellipses ProblemsNew Exact Algorithms for Planar Maximum Covering Location by Ellipses ProblemsNew Exact Algorithms for Planar Maximum Covering Location by Ellipses ProblemsGeometric Computation2020masterThesishttps://sucupira.capes.gov.br/sucupira/public/consultas/coleta/trabalhoConclusao/viewTrabalhoConclusao.jsf?popup=true&id_trabalho=9247287authorDanilo Françoso Tedeschihttp://lattes.cnpq.br/5518630756781848MARINA ANDRETTAhttp://lattes.cnpq.br/2046970162506930https://orcid.org/0000-0002-7068-6947UNIVERSIDADE DE SÃO PAULO/SÃO CARLOSUNIVERSIDADE DE SÃO PAULO/SÃO CARLOSUNIVERSIDADE DE SÃO PAULO/SÃO CARLOSCIÊNCIAS DA COMPUTAÇÃO E MATEMÁTICA COMPUTACIONALCIÊNCIAS DA COMPUTAÇÃO E MATEMÁTICA COMPUTACIONALPortal de Dados Abertos da CAPESPortal de Dados Abertos da CAPES |
identifier_str_mv |
Tedeschi, Danilo Françoso. New Exact Algorithms for Planar Maximum Covering Location by Ellipses Problems. 2020. Tese. |
dc.identifier.citation.fl_str_mv |
Tedeschi, Danilo Françoso. New Exact Algorithms for Planar Maximum Covering Location by Ellipses Problems. 2020. Tese. |
_version_ |
1741884540241051648 |