Breast elastography: diagnostic performance of computer-aided diagnosis software and interobserver agreement

Detalhes bibliográficos
Autor(a) principal: Fleury,Eduardo F. C.
Data de Publicação: 2020
Outros Autores: Marcomini,Karem
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Radiologia Brasileira (Online)
Texto Completo: http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-39842020000100007
Resumo: Abstract Objective: To determine the best cutoff value for classifying breast masses by ultrasound elastography, using dedicated software for strain elastography, and to determine the level of interobserver agreement. Materials and Methods: We enrolled 83 patients with 83 breast masses identified on ultrasound and referred for biopsy. After B-mode ultrasound examination, the lesions were manually segmented by three radiologists with varying degrees of experience in breast imaging, designated reader 1 (R1, with 15 years), reader 2 (R2, with 2 years), and reader 3 (R3, with 8 years). Elastography was performed automatically on the best image with computer-aided diagnosis (CAD) software. Cutoff values of 70%, 75%, 80%, and 90% of hard areas were applied for determining the performance of the CAD software. The best cutoff value for the most experienced radiologists was then compared with the visual assessment. Interobserver agreement for the best cutoff value was determined, as were the interclass correlation coefficient and concordance among the radiologists for the areas segmented. Results: The best cutoff value of the proportion of hard area within a breast mass, for experienced radiologists, was found to be 75%. At a cutoff value of 75%, the interobserver agreement was excellent between R1 and R2, as well as between R1 and R3, and good between R2 and R3. The interclass concordance coefficient among the three radiologists was 0.950. When assessing the segmented areas by size, we found that the level of agreement was higher among the more experienced radiologists. Conclusion: The best cutoff value for a quantitative CAD system to classify breast masses was 75%.
id CBR-1_549be3caa4d1340fbb361716764cb909
oai_identifier_str oai:scielo:S0100-39842020000100007
network_acronym_str CBR-1
network_name_str Radiologia Brasileira (Online)
repository_id_str
spelling Breast elastography: diagnostic performance of computer-aided diagnosis software and interobserver agreementUltrasonographyElasticity imaging techniquesBreastDiagnosis, computer-assistedObserver variationAbstract Objective: To determine the best cutoff value for classifying breast masses by ultrasound elastography, using dedicated software for strain elastography, and to determine the level of interobserver agreement. Materials and Methods: We enrolled 83 patients with 83 breast masses identified on ultrasound and referred for biopsy. After B-mode ultrasound examination, the lesions were manually segmented by three radiologists with varying degrees of experience in breast imaging, designated reader 1 (R1, with 15 years), reader 2 (R2, with 2 years), and reader 3 (R3, with 8 years). Elastography was performed automatically on the best image with computer-aided diagnosis (CAD) software. Cutoff values of 70%, 75%, 80%, and 90% of hard areas were applied for determining the performance of the CAD software. The best cutoff value for the most experienced radiologists was then compared with the visual assessment. Interobserver agreement for the best cutoff value was determined, as were the interclass correlation coefficient and concordance among the radiologists for the areas segmented. Results: The best cutoff value of the proportion of hard area within a breast mass, for experienced radiologists, was found to be 75%. At a cutoff value of 75%, the interobserver agreement was excellent between R1 and R2, as well as between R1 and R3, and good between R2 and R3. The interclass concordance coefficient among the three radiologists was 0.950. When assessing the segmented areas by size, we found that the level of agreement was higher among the more experienced radiologists. Conclusion: The best cutoff value for a quantitative CAD system to classify breast masses was 75%.Publicação do Colégio Brasileiro de Radiologia e Diagnóstico por Imagem2020-02-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontext/htmlhttp://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-39842020000100007Radiologia Brasileira v.53 n.1 2020reponame:Radiologia Brasileira (Online)instname:Colégio Brasileiro de Radiologia e Diagnóstico por Imagem (CBR)instacron:CBR10.1590/0100-3984.2019.0035info:eu-repo/semantics/openAccessFleury,Eduardo F. C.Marcomini,Karemeng2020-04-07T00:00:00Zoai:scielo:S0100-39842020000100007Revistahttps://www.scielo.br/j/rb/https://old.scielo.br/oai/scielo-oai.phpradiologiabrasileira@cbr.org.br1678-70990100-3984opendoar:2020-04-07T00:00Radiologia Brasileira (Online) - Colégio Brasileiro de Radiologia e Diagnóstico por Imagem (CBR)false
dc.title.none.fl_str_mv Breast elastography: diagnostic performance of computer-aided diagnosis software and interobserver agreement
title Breast elastography: diagnostic performance of computer-aided diagnosis software and interobserver agreement
spellingShingle Breast elastography: diagnostic performance of computer-aided diagnosis software and interobserver agreement
Fleury,Eduardo F. C.
Ultrasonography
Elasticity imaging techniques
Breast
Diagnosis, computer-assisted
Observer variation
title_short Breast elastography: diagnostic performance of computer-aided diagnosis software and interobserver agreement
title_full Breast elastography: diagnostic performance of computer-aided diagnosis software and interobserver agreement
title_fullStr Breast elastography: diagnostic performance of computer-aided diagnosis software and interobserver agreement
title_full_unstemmed Breast elastography: diagnostic performance of computer-aided diagnosis software and interobserver agreement
title_sort Breast elastography: diagnostic performance of computer-aided diagnosis software and interobserver agreement
author Fleury,Eduardo F. C.
author_facet Fleury,Eduardo F. C.
Marcomini,Karem
author_role author
author2 Marcomini,Karem
author2_role author
dc.contributor.author.fl_str_mv Fleury,Eduardo F. C.
Marcomini,Karem
dc.subject.por.fl_str_mv Ultrasonography
Elasticity imaging techniques
Breast
Diagnosis, computer-assisted
Observer variation
topic Ultrasonography
Elasticity imaging techniques
Breast
Diagnosis, computer-assisted
Observer variation
description Abstract Objective: To determine the best cutoff value for classifying breast masses by ultrasound elastography, using dedicated software for strain elastography, and to determine the level of interobserver agreement. Materials and Methods: We enrolled 83 patients with 83 breast masses identified on ultrasound and referred for biopsy. After B-mode ultrasound examination, the lesions were manually segmented by three radiologists with varying degrees of experience in breast imaging, designated reader 1 (R1, with 15 years), reader 2 (R2, with 2 years), and reader 3 (R3, with 8 years). Elastography was performed automatically on the best image with computer-aided diagnosis (CAD) software. Cutoff values of 70%, 75%, 80%, and 90% of hard areas were applied for determining the performance of the CAD software. The best cutoff value for the most experienced radiologists was then compared with the visual assessment. Interobserver agreement for the best cutoff value was determined, as were the interclass correlation coefficient and concordance among the radiologists for the areas segmented. Results: The best cutoff value of the proportion of hard area within a breast mass, for experienced radiologists, was found to be 75%. At a cutoff value of 75%, the interobserver agreement was excellent between R1 and R2, as well as between R1 and R3, and good between R2 and R3. The interclass concordance coefficient among the three radiologists was 0.950. When assessing the segmented areas by size, we found that the level of agreement was higher among the more experienced radiologists. Conclusion: The best cutoff value for a quantitative CAD system to classify breast masses was 75%.
publishDate 2020
dc.date.none.fl_str_mv 2020-02-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-39842020000100007
url http://old.scielo.br/scielo.php?script=sci_arttext&pid=S0100-39842020000100007
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv 10.1590/0100-3984.2019.0035
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv text/html
dc.publisher.none.fl_str_mv Publicação do Colégio Brasileiro de Radiologia e Diagnóstico por Imagem
publisher.none.fl_str_mv Publicação do Colégio Brasileiro de Radiologia e Diagnóstico por Imagem
dc.source.none.fl_str_mv Radiologia Brasileira v.53 n.1 2020
reponame:Radiologia Brasileira (Online)
instname:Colégio Brasileiro de Radiologia e Diagnóstico por Imagem (CBR)
instacron:CBR
instname_str Colégio Brasileiro de Radiologia e Diagnóstico por Imagem (CBR)
instacron_str CBR
institution CBR
reponame_str Radiologia Brasileira (Online)
collection Radiologia Brasileira (Online)
repository.name.fl_str_mv Radiologia Brasileira (Online) - Colégio Brasileiro de Radiologia e Diagnóstico por Imagem (CBR)
repository.mail.fl_str_mv radiologiabrasileira@cbr.org.br
_version_ 1754208940705447936