Interaction Analysis of the Virtual Learning Environment to Predict Evasion in Distance Learning Courses

Detalhes bibliográficos
Autor(a) principal: Sonnenstrahl, Thiago Siqueira
Data de Publicação: 2021
Outros Autores: Bernardi, Giliane, Pertile, Solange
Tipo de documento: Artigo
Idioma: por
Título da fonte: EAD em Foco
Texto Completo: https://eademfoco.cecierj.edu.br/index.php/Revista/article/view/1463
Resumo: This article aims, through Educational Data Mining (MDE), to analyze, through the interaction of students in the Virtual Learning Environment (AVA), possible dropouts in distance learning courses, providing strategic data for decision making by the institution's educational managers. In order to carry out the experiments, two sets of data were used containing the interactions of students in the AVA Moodle from two subsequent classes in distance learning mode. As a result, the hit rate for the first set of data was 93%, obtained with the Randon Forest algorithm, while for the second set, the hit rate was 85% with the model generated by the J48 algorithm. The mining results dispelled the visualized_task and the visualized_material as evasion indicators. Thus, it can be seen that students who have little interaction with the resources within the environment and do not see the materials and tasks available are more likely to drop out of the course. Keywords: Distance education. Evasion. Educational data mining.
id CECIERJ_2b30ce914450414025cf84f84e3793e2
oai_identifier_str oai:ojs.eademfoco.cecierj.edu.br:article/1463
network_acronym_str CECIERJ
network_name_str EAD em Foco
repository_id_str
spelling Interaction Analysis of the Virtual Learning Environment to Predict Evasion in Distance Learning CoursesAnálise de Interações do Ambiente Virtual de Aprendizagem para Predição de Evasão em Cursos no Ensino a DistânciaThis article aims, through Educational Data Mining (MDE), to analyze, through the interaction of students in the Virtual Learning Environment (AVA), possible dropouts in distance learning courses, providing strategic data for decision making by the institution's educational managers. In order to carry out the experiments, two sets of data were used containing the interactions of students in the AVA Moodle from two subsequent classes in distance learning mode. As a result, the hit rate for the first set of data was 93%, obtained with the Randon Forest algorithm, while for the second set, the hit rate was 85% with the model generated by the J48 algorithm. The mining results dispelled the visualized_task and the visualized_material as evasion indicators. Thus, it can be seen that students who have little interaction with the resources within the environment and do not see the materials and tasks available are more likely to drop out of the course. Keywords: Distance education. Evasion. Educational data mining.Este artigo tem como objetivo, através da Mineração de Dados Educacionais (MDE), analisar, por meio da interação dos alunos no Ambiente Virtual de Aprendizagem (AVA), possíveis evasões em cursos na modalidade a distância, disponibilizando dados estratégicos para a tomada de decisão pelos gestores educacionais da instituição. Para a realização dos experimentos foram utilizados dois conjuntos de dados contendo as interações dos alunos no AVA Moodle de duas turmas subsequentes na modalidade EaD. Como resultado, a taxa de acerto (número de alunos que os algoritmos classificaram corretamente como evadido ou concluintes)  do primeiro conjunto de dados foi de 93%, obtida com o algoritmo Randon Forest, já para o segundo conjunto, a taxa de acerto foi de 85% com o modelo gerado pelo algoritmo J48. Os resultados da mineração apresentaram a tarefa_visualizada e o material_visualizado como indicadores de evasão. Desta forma, pode-se constatar que os alunos que pouco interagem com os recursos dentro do ambiente e não visualizam os materiais e tarefas disponibilizadas são mais propensos a evadirem do curso. Palavras-chave: Educação a distância. Evasão. Mineração de dados educacionais.Fundação Cecierj2021-07-14info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://eademfoco.cecierj.edu.br/index.php/Revista/article/view/146310.18264/eadf.v11i1.1463EaD em Foco; Vol. 11 No. 1 (2021)EaD em Foco; Vol. 11 Núm. 1 (2021)EaD em Foco; v. 11 n. 1 (2021)2177-8310reponame:EAD em Focoinstname:Fundação Centro de Ciências e Educação Superior a Distância do Estado do Rio de Janeiro (CECIERJ)instacron:CECIERJporhttps://eademfoco.cecierj.edu.br/index.php/Revista/article/view/1463/672Copyright (c) 2021 EaD em Focohttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessSonnenstrahl, Thiago Siqueira Bernardi, Giliane Pertile, Solange2022-01-17T21:04:18ZRevistahttps://eademfoco.cecierj.edu.br/index.php/RevistaONG
dc.title.none.fl_str_mv Interaction Analysis of the Virtual Learning Environment to Predict Evasion in Distance Learning Courses
Análise de Interações do Ambiente Virtual de Aprendizagem para Predição de Evasão em Cursos no Ensino a Distância
title Interaction Analysis of the Virtual Learning Environment to Predict Evasion in Distance Learning Courses
spellingShingle Interaction Analysis of the Virtual Learning Environment to Predict Evasion in Distance Learning Courses
Sonnenstrahl, Thiago Siqueira
title_short Interaction Analysis of the Virtual Learning Environment to Predict Evasion in Distance Learning Courses
title_full Interaction Analysis of the Virtual Learning Environment to Predict Evasion in Distance Learning Courses
title_fullStr Interaction Analysis of the Virtual Learning Environment to Predict Evasion in Distance Learning Courses
title_full_unstemmed Interaction Analysis of the Virtual Learning Environment to Predict Evasion in Distance Learning Courses
title_sort Interaction Analysis of the Virtual Learning Environment to Predict Evasion in Distance Learning Courses
author Sonnenstrahl, Thiago Siqueira
author_facet Sonnenstrahl, Thiago Siqueira
Bernardi, Giliane
Pertile, Solange
author_role author
author2 Bernardi, Giliane
Pertile, Solange
author2_role author
author
dc.contributor.author.fl_str_mv Sonnenstrahl, Thiago Siqueira
Bernardi, Giliane
Pertile, Solange
description This article aims, through Educational Data Mining (MDE), to analyze, through the interaction of students in the Virtual Learning Environment (AVA), possible dropouts in distance learning courses, providing strategic data for decision making by the institution's educational managers. In order to carry out the experiments, two sets of data were used containing the interactions of students in the AVA Moodle from two subsequent classes in distance learning mode. As a result, the hit rate for the first set of data was 93%, obtained with the Randon Forest algorithm, while for the second set, the hit rate was 85% with the model generated by the J48 algorithm. The mining results dispelled the visualized_task and the visualized_material as evasion indicators. Thus, it can be seen that students who have little interaction with the resources within the environment and do not see the materials and tasks available are more likely to drop out of the course. Keywords: Distance education. Evasion. Educational data mining.
publishDate 2021
dc.date.none.fl_str_mv 2021-07-14
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://eademfoco.cecierj.edu.br/index.php/Revista/article/view/1463
10.18264/eadf.v11i1.1463
url https://eademfoco.cecierj.edu.br/index.php/Revista/article/view/1463
identifier_str_mv 10.18264/eadf.v11i1.1463
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://eademfoco.cecierj.edu.br/index.php/Revista/article/view/1463/672
dc.rights.driver.fl_str_mv Copyright (c) 2021 EaD em Foco
https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2021 EaD em Foco
https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Fundação Cecierj
publisher.none.fl_str_mv Fundação Cecierj
dc.source.none.fl_str_mv EaD em Foco; Vol. 11 No. 1 (2021)
EaD em Foco; Vol. 11 Núm. 1 (2021)
EaD em Foco; v. 11 n. 1 (2021)
2177-8310
reponame:EAD em Foco
instname:Fundação Centro de Ciências e Educação Superior a Distância do Estado do Rio de Janeiro (CECIERJ)
instacron:CECIERJ
instname_str Fundação Centro de Ciências e Educação Superior a Distância do Estado do Rio de Janeiro (CECIERJ)
instacron_str CECIERJ
institution CECIERJ
reponame_str EAD em Foco
collection EAD em Foco
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1814253791888801792