Value at Risk prediction model using long term volatility - DOI: http://dx.doi.org/10.16930/2237-7662/rccc.v15n45p23-33
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Revista Catarinense da Ciência Contábil (Online) |
Texto Completo: | https://revista.crcsc.org.br/index.php/CRCSC/article/view/2206 |
Resumo: | Having in mind the importance of Value at Risk (VaR) as a risk measure for financial institutions and rating agencies, this study evaluated whether the ARLS model is more accurate in the calculation of the long term VaR than the traditional models, considering it is more appropriate for predicting the long-term volatility. Due to the fact that VaR s being used for market players as a measure of risk for the portfolio management, its proper measurement is important. Based on daily data from the stock markets and exchange of BRICS (Brazil, Russia, India, China and South Africa) future volatilities for 15 days, 1 month and 3 months ahead were calculated. Then the traditional measures of VaR accuracy were calculated. The results suggest the superiority of ARLS model for predicting the exchange rate volatility, being able to predict precisely the number of violations in 33% of cases, while traditional models did not perform well. Regarding the stock market, GARCH and ARLS models showed similar performance, with higher accuracy of the GARCH model considering the quadratic average loss function. These results have shown that the choice of ARLS model in VaR calculation to currency portfolios is better due to higher achieved accuracy, thus helping market participants to better manage the risk of their portfolios. In relation to the stock market, considering the similar performance of GARCH and ARLS models, the GARCH model is more suitable because of its greater simplicity and easy computational implementation. |
id |
CRCSC-1_04905b2338842d05f64f90c30fa5e029 |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/2206 |
network_acronym_str |
CRCSC-1 |
network_name_str |
Revista Catarinense da Ciência Contábil (Online) |
repository_id_str |
|
spelling |
Value at Risk prediction model using long term volatility - DOI: http://dx.doi.org/10.16930/2237-7662/rccc.v15n45p23-33Modelo de previsão de value at risk utilizando volatilidade de longo prazoValue at RiskVolatilityGARCHARLS.Value at RiskVolatilidadeGARCHARLS.Having in mind the importance of Value at Risk (VaR) as a risk measure for financial institutions and rating agencies, this study evaluated whether the ARLS model is more accurate in the calculation of the long term VaR than the traditional models, considering it is more appropriate for predicting the long-term volatility. Due to the fact that VaR s being used for market players as a measure of risk for the portfolio management, its proper measurement is important. Based on daily data from the stock markets and exchange of BRICS (Brazil, Russia, India, China and South Africa) future volatilities for 15 days, 1 month and 3 months ahead were calculated. Then the traditional measures of VaR accuracy were calculated. The results suggest the superiority of ARLS model for predicting the exchange rate volatility, being able to predict precisely the number of violations in 33% of cases, while traditional models did not perform well. Regarding the stock market, GARCH and ARLS models showed similar performance, with higher accuracy of the GARCH model considering the quadratic average loss function. These results have shown that the choice of ARLS model in VaR calculation to currency portfolios is better due to higher achieved accuracy, thus helping market participants to better manage the risk of their portfolios. In relation to the stock market, considering the similar performance of GARCH and ARLS models, the GARCH model is more suitable because of its greater simplicity and easy computational implementation.Tendo em vista a importância do Value at Risk (VaR) como medida de risco para instituições financeiras e agências de risco, o presente estudo avaliou se o modelo ARLS é mais preciso no cálculo do VaR de longo prazo que os modelos tradicionais, dada sua maior adequação para a previsão da volatilidade. Considerando a utilização do VaR pelos agentes de mercado como medida de risco para o gerenciamento de portfólios é importante sua adequada mensuração. A partir de dados diários dos mercados de ações e cambial dos BRICS (Brasil, Rússia, Índia, China e África do Sul) foram calculadas as volatilidades futuras para 15 dias, 1 mês e 3 meses. Em seguida, calculou-se as medidas tradicionais de avaliação da precisão do VaR. Os resultados sugerem a superioridade do modelo ARLS para a previsão da volatilidade cambial, capaz de prever corretamente o número de violações em 33% dos casos, enquanto os modelos tradicionais não obtiveram um bom desempenho. Com relação ao mercado acionário, os modelos GARCH e ARLS apresentaram desempenho similar. O modelo GARCH é superior considerando a perda média quadrática. Esses resultados apontam para a escolha do modelo ARLS no cálculo do VaR de portfólios cambiais devido a maior precisão alcançada. Ajuda assim os agentes de mercado a melhor gerirem o risco de suas carteiras. Em relação ao mercado acionário, em função do desempenho similar dos modelos GARCH e ARLS, o modelo GARCH é o mais indicado devido a sua maior simplicidade e fácil implementação computacional.Conselho Regional de Contabilidade de Santa Catarina2016-07-26info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revista.crcsc.org.br/index.php/CRCSC/article/view/220610.16930/2237-7662/rccc.v15n45p23-33Revista Catarinense da Ciência Contábil; Vol. 15 No. 45 (2016): Maio-Agosto; p. 23-33Revista Catarinense da Ciência Contábil; v. 15 n. 45 (2016): Maio-Agosto; p. 23-332237-76621808-3781reponame:Revista Catarinense da Ciência Contábil (Online)instname:Conselho Regional de Contabilidade de Santa Catarina (CRCSC)instacron:CRCSCporhttps://revista.crcsc.org.br/index.php/CRCSC/article/view/2206/1890Copyright (c) 2016 Revista Catarinense da Ciência Contábilhttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessMaia, Vinicius MothéMonteiro, Igor SwinerdPinto, Antonio Carlos FigueiredoKlotzle, Marcelo Cabus2024-03-08T18:52:35Zoai:ojs.pkp.sfu.ca:article/2206Revistahttp://www.atena.org.br/revista/ojs-2.2.3-06/index.php/crcscPRIhttp://revista.crcsc.org.br/revista/ojs-2.2.3-06/index.php/CRCSC/oai||revista@crcsc.org.br2237-76621808-3781opendoar:2024-03-08T18:52:35Revista Catarinense da Ciência Contábil (Online) - Conselho Regional de Contabilidade de Santa Catarina (CRCSC)false |
dc.title.none.fl_str_mv |
Value at Risk prediction model using long term volatility - DOI: http://dx.doi.org/10.16930/2237-7662/rccc.v15n45p23-33 Modelo de previsão de value at risk utilizando volatilidade de longo prazo |
title |
Value at Risk prediction model using long term volatility - DOI: http://dx.doi.org/10.16930/2237-7662/rccc.v15n45p23-33 |
spellingShingle |
Value at Risk prediction model using long term volatility - DOI: http://dx.doi.org/10.16930/2237-7662/rccc.v15n45p23-33 Maia, Vinicius Mothé Value at Risk Volatility GARCH ARLS. Value at Risk Volatilidade GARCH ARLS. |
title_short |
Value at Risk prediction model using long term volatility - DOI: http://dx.doi.org/10.16930/2237-7662/rccc.v15n45p23-33 |
title_full |
Value at Risk prediction model using long term volatility - DOI: http://dx.doi.org/10.16930/2237-7662/rccc.v15n45p23-33 |
title_fullStr |
Value at Risk prediction model using long term volatility - DOI: http://dx.doi.org/10.16930/2237-7662/rccc.v15n45p23-33 |
title_full_unstemmed |
Value at Risk prediction model using long term volatility - DOI: http://dx.doi.org/10.16930/2237-7662/rccc.v15n45p23-33 |
title_sort |
Value at Risk prediction model using long term volatility - DOI: http://dx.doi.org/10.16930/2237-7662/rccc.v15n45p23-33 |
author |
Maia, Vinicius Mothé |
author_facet |
Maia, Vinicius Mothé Monteiro, Igor Swinerd Pinto, Antonio Carlos Figueiredo Klotzle, Marcelo Cabus |
author_role |
author |
author2 |
Monteiro, Igor Swinerd Pinto, Antonio Carlos Figueiredo Klotzle, Marcelo Cabus |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Maia, Vinicius Mothé Monteiro, Igor Swinerd Pinto, Antonio Carlos Figueiredo Klotzle, Marcelo Cabus |
dc.subject.por.fl_str_mv |
Value at Risk Volatility GARCH ARLS. Value at Risk Volatilidade GARCH ARLS. |
topic |
Value at Risk Volatility GARCH ARLS. Value at Risk Volatilidade GARCH ARLS. |
description |
Having in mind the importance of Value at Risk (VaR) as a risk measure for financial institutions and rating agencies, this study evaluated whether the ARLS model is more accurate in the calculation of the long term VaR than the traditional models, considering it is more appropriate for predicting the long-term volatility. Due to the fact that VaR s being used for market players as a measure of risk for the portfolio management, its proper measurement is important. Based on daily data from the stock markets and exchange of BRICS (Brazil, Russia, India, China and South Africa) future volatilities for 15 days, 1 month and 3 months ahead were calculated. Then the traditional measures of VaR accuracy were calculated. The results suggest the superiority of ARLS model for predicting the exchange rate volatility, being able to predict precisely the number of violations in 33% of cases, while traditional models did not perform well. Regarding the stock market, GARCH and ARLS models showed similar performance, with higher accuracy of the GARCH model considering the quadratic average loss function. These results have shown that the choice of ARLS model in VaR calculation to currency portfolios is better due to higher achieved accuracy, thus helping market participants to better manage the risk of their portfolios. In relation to the stock market, considering the similar performance of GARCH and ARLS models, the GARCH model is more suitable because of its greater simplicity and easy computational implementation. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-07-26 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://revista.crcsc.org.br/index.php/CRCSC/article/view/2206 10.16930/2237-7662/rccc.v15n45p23-33 |
url |
https://revista.crcsc.org.br/index.php/CRCSC/article/view/2206 |
identifier_str_mv |
10.16930/2237-7662/rccc.v15n45p23-33 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://revista.crcsc.org.br/index.php/CRCSC/article/view/2206/1890 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2016 Revista Catarinense da Ciência Contábil https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2016 Revista Catarinense da Ciência Contábil https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Conselho Regional de Contabilidade de Santa Catarina |
publisher.none.fl_str_mv |
Conselho Regional de Contabilidade de Santa Catarina |
dc.source.none.fl_str_mv |
Revista Catarinense da Ciência Contábil; Vol. 15 No. 45 (2016): Maio-Agosto; p. 23-33 Revista Catarinense da Ciência Contábil; v. 15 n. 45 (2016): Maio-Agosto; p. 23-33 2237-7662 1808-3781 reponame:Revista Catarinense da Ciência Contábil (Online) instname:Conselho Regional de Contabilidade de Santa Catarina (CRCSC) instacron:CRCSC |
instname_str |
Conselho Regional de Contabilidade de Santa Catarina (CRCSC) |
instacron_str |
CRCSC |
institution |
CRCSC |
reponame_str |
Revista Catarinense da Ciência Contábil (Online) |
collection |
Revista Catarinense da Ciência Contábil (Online) |
repository.name.fl_str_mv |
Revista Catarinense da Ciência Contábil (Online) - Conselho Regional de Contabilidade de Santa Catarina (CRCSC) |
repository.mail.fl_str_mv |
||revista@crcsc.org.br |
_version_ |
1809731681735671808 |