Value at Risk prediction model using long term volatility - DOI: http://dx.doi.org/10.16930/2237-7662/rccc.v15n45p23-33

Detalhes bibliográficos
Autor(a) principal: Maia, Vinicius Mothé
Data de Publicação: 2016
Outros Autores: Monteiro, Igor Swinerd, Pinto, Antonio Carlos Figueiredo, Klotzle, Marcelo Cabus
Tipo de documento: Artigo
Idioma: por
Título da fonte: Revista Catarinense da Ciência Contábil (Online)
Texto Completo: https://revista.crcsc.org.br/index.php/CRCSC/article/view/2206
Resumo: Having in mind the importance of Value at Risk (VaR) as a risk measure for financial institutions and rating agencies, this study evaluated whether the ARLS model is more accurate in the calculation of the long term VaR than the traditional models, considering it is more appropriate for predicting the long-term volatility. Due to the fact that VaR s being used for market players as a measure of risk for the portfolio management, its proper measurement is important. Based on daily data from the stock markets and exchange of BRICS (Brazil, Russia, India, China and South Africa) future volatilities for 15 days, 1 month and 3 months ahead were calculated. Then the traditional measures of VaR accuracy were calculated. The results suggest the superiority of ARLS model for predicting the exchange rate volatility, being able to  predict precisely the number of violations in 33% of cases, while traditional models did not perform well. Regarding the stock market, GARCH and ARLS models showed similar performance, with higher accuracy of the GARCH model considering the quadratic average loss function. These results have shown that the choice of ARLS model in VaR calculation to currency portfolios is better due to higher achieved accuracy, thus helping market participants to better manage the risk of their portfolios. In relation to the stock market, considering the similar performance of GARCH and ARLS models, the GARCH model is more suitable because of its greater simplicity and easy computational implementation.
id CRCSC-1_04905b2338842d05f64f90c30fa5e029
oai_identifier_str oai:ojs.pkp.sfu.ca:article/2206
network_acronym_str CRCSC-1
network_name_str Revista Catarinense da Ciência Contábil (Online)
repository_id_str
spelling Value at Risk prediction model using long term volatility - DOI: http://dx.doi.org/10.16930/2237-7662/rccc.v15n45p23-33Modelo de previsão de value at risk utilizando volatilidade de longo prazoValue at RiskVolatilityGARCHARLS.Value at RiskVolatilidadeGARCHARLS.Having in mind the importance of Value at Risk (VaR) as a risk measure for financial institutions and rating agencies, this study evaluated whether the ARLS model is more accurate in the calculation of the long term VaR than the traditional models, considering it is more appropriate for predicting the long-term volatility. Due to the fact that VaR s being used for market players as a measure of risk for the portfolio management, its proper measurement is important. Based on daily data from the stock markets and exchange of BRICS (Brazil, Russia, India, China and South Africa) future volatilities for 15 days, 1 month and 3 months ahead were calculated. Then the traditional measures of VaR accuracy were calculated. The results suggest the superiority of ARLS model for predicting the exchange rate volatility, being able to  predict precisely the number of violations in 33% of cases, while traditional models did not perform well. Regarding the stock market, GARCH and ARLS models showed similar performance, with higher accuracy of the GARCH model considering the quadratic average loss function. These results have shown that the choice of ARLS model in VaR calculation to currency portfolios is better due to higher achieved accuracy, thus helping market participants to better manage the risk of their portfolios. In relation to the stock market, considering the similar performance of GARCH and ARLS models, the GARCH model is more suitable because of its greater simplicity and easy computational implementation.Tendo em vista a importância  do Value at Risk (VaR) como medida de risco para instituições financeiras e agências de risco, o presente estudo avaliou se o modelo ARLS é mais preciso no cálculo do VaR de longo prazo que os modelos tradicionais, dada sua maior adequação para a previsão da volatilidade. Considerando a utilização do VaR pelos agentes de mercado como medida de risco para o gerenciamento de portfólios é importante sua adequada mensuração. A partir de dados diários dos mercados de ações e cambial dos BRICS (Brasil, Rússia, Índia, China e África do Sul) foram calculadas as volatilidades  futuras para 15 dias, 1 mês e 3 meses. Em seguida, calculou-se as medidas tradicionais de avaliação da precisão do VaR. Os resultados sugerem a superioridade do modelo ARLS para a previsão da volatilidade cambial, capaz de prever corretamente o número de violações em 33% dos casos, enquanto os modelos tradicionais não obtiveram um bom desempenho. Com relação ao mercado acionário, os modelos GARCH e ARLS apresentaram desempenho similar. O modelo GARCH é superior considerando a perda média quadrática. Esses resultados apontam para a escolha do modelo ARLS no cálculo do VaR de portfólios cambiais devido a maior precisão alcançada. Ajuda assim os agentes de mercado a melhor gerirem o risco de suas carteiras. Em relação ao mercado acionário, em função do desempenho similar dos modelos GARCH e ARLS, o modelo GARCH é o mais indicado devido a sua maior simplicidade e fácil implementação computacional.Conselho Regional de Contabilidade de Santa Catarina2016-07-26info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revista.crcsc.org.br/index.php/CRCSC/article/view/220610.16930/2237-7662/rccc.v15n45p23-33Revista Catarinense da Ciência Contábil; Vol. 15 No. 45 (2016): Maio-Agosto; p. 23-33Revista Catarinense da Ciência Contábil; v. 15 n. 45 (2016): Maio-Agosto; p. 23-332237-76621808-3781reponame:Revista Catarinense da Ciência Contábil (Online)instname:Conselho Regional de Contabilidade de Santa Catarina (CRCSC)instacron:CRCSCporhttps://revista.crcsc.org.br/index.php/CRCSC/article/view/2206/1890Copyright (c) 2016 Revista Catarinense da Ciência Contábilhttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessMaia, Vinicius MothéMonteiro, Igor SwinerdPinto, Antonio Carlos FigueiredoKlotzle, Marcelo Cabus2024-03-08T18:52:35Zoai:ojs.pkp.sfu.ca:article/2206Revistahttp://www.atena.org.br/revista/ojs-2.2.3-06/index.php/crcscPRIhttp://revista.crcsc.org.br/revista/ojs-2.2.3-06/index.php/CRCSC/oai||revista@crcsc.org.br2237-76621808-3781opendoar:2024-03-08T18:52:35Revista Catarinense da Ciência Contábil (Online) - Conselho Regional de Contabilidade de Santa Catarina (CRCSC)false
dc.title.none.fl_str_mv Value at Risk prediction model using long term volatility - DOI: http://dx.doi.org/10.16930/2237-7662/rccc.v15n45p23-33
Modelo de previsão de value at risk utilizando volatilidade de longo prazo
title Value at Risk prediction model using long term volatility - DOI: http://dx.doi.org/10.16930/2237-7662/rccc.v15n45p23-33
spellingShingle Value at Risk prediction model using long term volatility - DOI: http://dx.doi.org/10.16930/2237-7662/rccc.v15n45p23-33
Maia, Vinicius Mothé
Value at Risk
Volatility
GARCH
ARLS.
Value at Risk
Volatilidade
GARCH
ARLS.
title_short Value at Risk prediction model using long term volatility - DOI: http://dx.doi.org/10.16930/2237-7662/rccc.v15n45p23-33
title_full Value at Risk prediction model using long term volatility - DOI: http://dx.doi.org/10.16930/2237-7662/rccc.v15n45p23-33
title_fullStr Value at Risk prediction model using long term volatility - DOI: http://dx.doi.org/10.16930/2237-7662/rccc.v15n45p23-33
title_full_unstemmed Value at Risk prediction model using long term volatility - DOI: http://dx.doi.org/10.16930/2237-7662/rccc.v15n45p23-33
title_sort Value at Risk prediction model using long term volatility - DOI: http://dx.doi.org/10.16930/2237-7662/rccc.v15n45p23-33
author Maia, Vinicius Mothé
author_facet Maia, Vinicius Mothé
Monteiro, Igor Swinerd
Pinto, Antonio Carlos Figueiredo
Klotzle, Marcelo Cabus
author_role author
author2 Monteiro, Igor Swinerd
Pinto, Antonio Carlos Figueiredo
Klotzle, Marcelo Cabus
author2_role author
author
author
dc.contributor.author.fl_str_mv Maia, Vinicius Mothé
Monteiro, Igor Swinerd
Pinto, Antonio Carlos Figueiredo
Klotzle, Marcelo Cabus
dc.subject.por.fl_str_mv Value at Risk
Volatility
GARCH
ARLS.
Value at Risk
Volatilidade
GARCH
ARLS.
topic Value at Risk
Volatility
GARCH
ARLS.
Value at Risk
Volatilidade
GARCH
ARLS.
description Having in mind the importance of Value at Risk (VaR) as a risk measure for financial institutions and rating agencies, this study evaluated whether the ARLS model is more accurate in the calculation of the long term VaR than the traditional models, considering it is more appropriate for predicting the long-term volatility. Due to the fact that VaR s being used for market players as a measure of risk for the portfolio management, its proper measurement is important. Based on daily data from the stock markets and exchange of BRICS (Brazil, Russia, India, China and South Africa) future volatilities for 15 days, 1 month and 3 months ahead were calculated. Then the traditional measures of VaR accuracy were calculated. The results suggest the superiority of ARLS model for predicting the exchange rate volatility, being able to  predict precisely the number of violations in 33% of cases, while traditional models did not perform well. Regarding the stock market, GARCH and ARLS models showed similar performance, with higher accuracy of the GARCH model considering the quadratic average loss function. These results have shown that the choice of ARLS model in VaR calculation to currency portfolios is better due to higher achieved accuracy, thus helping market participants to better manage the risk of their portfolios. In relation to the stock market, considering the similar performance of GARCH and ARLS models, the GARCH model is more suitable because of its greater simplicity and easy computational implementation.
publishDate 2016
dc.date.none.fl_str_mv 2016-07-26
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://revista.crcsc.org.br/index.php/CRCSC/article/view/2206
10.16930/2237-7662/rccc.v15n45p23-33
url https://revista.crcsc.org.br/index.php/CRCSC/article/view/2206
identifier_str_mv 10.16930/2237-7662/rccc.v15n45p23-33
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://revista.crcsc.org.br/index.php/CRCSC/article/view/2206/1890
dc.rights.driver.fl_str_mv Copyright (c) 2016 Revista Catarinense da Ciência Contábil
https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2016 Revista Catarinense da Ciência Contábil
https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Conselho Regional de Contabilidade de Santa Catarina
publisher.none.fl_str_mv Conselho Regional de Contabilidade de Santa Catarina
dc.source.none.fl_str_mv Revista Catarinense da Ciência Contábil; Vol. 15 No. 45 (2016): Maio-Agosto; p. 23-33
Revista Catarinense da Ciência Contábil; v. 15 n. 45 (2016): Maio-Agosto; p. 23-33
2237-7662
1808-3781
reponame:Revista Catarinense da Ciência Contábil (Online)
instname:Conselho Regional de Contabilidade de Santa Catarina (CRCSC)
instacron:CRCSC
instname_str Conselho Regional de Contabilidade de Santa Catarina (CRCSC)
instacron_str CRCSC
institution CRCSC
reponame_str Revista Catarinense da Ciência Contábil (Online)
collection Revista Catarinense da Ciência Contábil (Online)
repository.name.fl_str_mv Revista Catarinense da Ciência Contábil (Online) - Conselho Regional de Contabilidade de Santa Catarina (CRCSC)
repository.mail.fl_str_mv ||revista@crcsc.org.br
_version_ 1809731681735671808