Modeling volatility: an assessment of the value at risk approach

Detalhes bibliográficos
Autor(a) principal: Vieira, Joana Bruno
Data de Publicação: 2012
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
Texto Completo: http://hdl.handle.net/10071/5168
Resumo: Value at Risk (VaR) tornou-se uma das mais populares técnicas de medição e controlo de risco, nomeadamente risco de mercado. Esta medida diz-nos qual a perda máxima esperada de um activo ou portfólio para um determinado período de tempo dado um certo intervalo de confiança. Nesta tese, pretende-se verificar a adequação de alguns modelos de heteroscedasticidade condicional para estimar e modelizar a volatilidade dos retornos. Para isso, consideraram-se os seguintes modelos: EWMA, GARCH, A-PARCH, E-GARCH e GJR-GARCH e diferentes índices e taxas de câmbio representativos de áreas geográficas distintas, também como dois activos com características particulares: o ouro e o petróleo. A performance dos modelos na estimação do VaR foi analisada com recurso às técnicas de backtesting nomeadamente ao teste de Kupiec (1995) e Christoffersen (1998). Com este estudo é revelado que o método GARCH e GJR-GARCH conseguem prever o VaR de uma forma mais precisa do que os restantes modelos considerados para os dois níveis de confiança analisados (95% e 99%).
id RCAP_54d7aece0aed3ff06fa08db5551d83fc
oai_identifier_str oai:repositorio.iscte-iul.pt:10071/5168
network_acronym_str RCAP
network_name_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository_id_str 7160
spelling Modeling volatility: an assessment of the value at risk approachValue at riskVolatilityGARCHBacktestingValue at Risk (VaR) tornou-se uma das mais populares técnicas de medição e controlo de risco, nomeadamente risco de mercado. Esta medida diz-nos qual a perda máxima esperada de um activo ou portfólio para um determinado período de tempo dado um certo intervalo de confiança. Nesta tese, pretende-se verificar a adequação de alguns modelos de heteroscedasticidade condicional para estimar e modelizar a volatilidade dos retornos. Para isso, consideraram-se os seguintes modelos: EWMA, GARCH, A-PARCH, E-GARCH e GJR-GARCH e diferentes índices e taxas de câmbio representativos de áreas geográficas distintas, também como dois activos com características particulares: o ouro e o petróleo. A performance dos modelos na estimação do VaR foi analisada com recurso às técnicas de backtesting nomeadamente ao teste de Kupiec (1995) e Christoffersen (1998). Com este estudo é revelado que o método GARCH e GJR-GARCH conseguem prever o VaR de uma forma mais precisa do que os restantes modelos considerados para os dois níveis de confiança analisados (95% e 99%).The Value at Risk (VaR) became one of the most popular technics for risk measuring and control, especially for market risk. This type of measure tells us which is the maximum expected lost for an asset or portfolio, for a given period of time and a certain confidence level. In order to compute the VaR, the main purpose of this dissertation is to verify the suitability of some conditional heteroskedasticity models to estimate and model the volatility of returns. To do this, the following models were considered: EWMA, GARCH, A-PARCH, E-GARCH, GJR-GARCH and different indexes and exchange rates representative of different geographical areas as well as two assets with particular characteristics: gold and oil. The models’ performance in the estimation of VaR was analyzed by using Kupiec (1995) and Christoffersen (1998) backtesting technics. The study revealed that GARCH and GJR-GARCH models seem to be the most accurate way to predict the VaR when the two most commonly used confidence levels (95% and 99%) are used.2013-06-20T11:13:21Z2012-01-01T00:00:00Z20122012-04info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfapplication/octet-streamhttp://hdl.handle.net/10071/5168engVieira, Joana Brunoinfo:eu-repo/semantics/openAccessreponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãoinstacron:RCAAP2023-11-09T17:53:25Zoai:repositorio.iscte-iul.pt:10071/5168Portal AgregadorONGhttps://www.rcaap.pt/oai/openaireopendoar:71602024-03-19T22:26:47.509437Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informaçãofalse
dc.title.none.fl_str_mv Modeling volatility: an assessment of the value at risk approach
title Modeling volatility: an assessment of the value at risk approach
spellingShingle Modeling volatility: an assessment of the value at risk approach
Vieira, Joana Bruno
Value at risk
Volatility
GARCH
Backtesting
title_short Modeling volatility: an assessment of the value at risk approach
title_full Modeling volatility: an assessment of the value at risk approach
title_fullStr Modeling volatility: an assessment of the value at risk approach
title_full_unstemmed Modeling volatility: an assessment of the value at risk approach
title_sort Modeling volatility: an assessment of the value at risk approach
author Vieira, Joana Bruno
author_facet Vieira, Joana Bruno
author_role author
dc.contributor.author.fl_str_mv Vieira, Joana Bruno
dc.subject.por.fl_str_mv Value at risk
Volatility
GARCH
Backtesting
topic Value at risk
Volatility
GARCH
Backtesting
description Value at Risk (VaR) tornou-se uma das mais populares técnicas de medição e controlo de risco, nomeadamente risco de mercado. Esta medida diz-nos qual a perda máxima esperada de um activo ou portfólio para um determinado período de tempo dado um certo intervalo de confiança. Nesta tese, pretende-se verificar a adequação de alguns modelos de heteroscedasticidade condicional para estimar e modelizar a volatilidade dos retornos. Para isso, consideraram-se os seguintes modelos: EWMA, GARCH, A-PARCH, E-GARCH e GJR-GARCH e diferentes índices e taxas de câmbio representativos de áreas geográficas distintas, também como dois activos com características particulares: o ouro e o petróleo. A performance dos modelos na estimação do VaR foi analisada com recurso às técnicas de backtesting nomeadamente ao teste de Kupiec (1995) e Christoffersen (1998). Com este estudo é revelado que o método GARCH e GJR-GARCH conseguem prever o VaR de uma forma mais precisa do que os restantes modelos considerados para os dois níveis de confiança analisados (95% e 99%).
publishDate 2012
dc.date.none.fl_str_mv 2012-01-01T00:00:00Z
2012
2012-04
2013-06-20T11:13:21Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10071/5168
url http://hdl.handle.net/10071/5168
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/octet-stream
dc.source.none.fl_str_mv reponame:Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
instname:Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron:RCAAP
instname_str Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
instacron_str RCAAP
institution RCAAP
reponame_str Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
collection Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos)
repository.name.fl_str_mv Repositório Científico de Acesso Aberto de Portugal (Repositórios Cientìficos) - Agência para a Sociedade do Conhecimento (UMIC) - FCT - Sociedade da Informação
repository.mail.fl_str_mv
_version_ 1799134831133589504