Discriminant analysis as a predictive tool of financial difficulties in Brazilian companies in the share market

Detalhes bibliográficos
Autor(a) principal: Teixeira, Silvio Aparecido
Data de Publicação: 2024
Outros Autores: Mazzioni, Sady, Dockhorn, Marcelo da Silva Mello, Hein, Nelson
Tipo de documento: Artigo
Idioma: por
Título da fonte: Revista Catarinense da Ciência Contábil (Online)
Texto Completo: https://revista.crcsc.org.br/index.php/CRCSC/article/view/1812
Resumo: The objective of this study is to verify the economic-financial situation of some companies. For that, it is required the joint analysis of their financial statements in order to predict future conditions which will generate results and honor their commitments. This paper aims at estimating discriminant functions for groups of profitable, intermediary and lossmaking companies listed on the BM&FBOVESPA within 2009 and 2011. The methodological procedures used characterize this study as descriptive, documental and quantitative. The data used were collected from the Economática® database. The companies belonging to the financial sector and services were not considered in the analysis and those which did not show the necessary data were excluded, resulting in a sample of 255 organizations. Data analysis was performed by using the SPSS®software, having as the meeting variable the three groups of companies and as explanatory variables the economic-financial indicators of liquidity, profitability and capital structure. Data analysis identified the existence of separation between groups, pointing to the Debt Breakdown as the variable that best represents this separation. Two functions were created; the first one, which segregated the profitable enterprises from the intermediary ones, showed high ability to demonstrate the differences between the two groups; the second discriminant function accounted for only the residual power for segregation between the intermediary and loss-making companies.
id CRCSC-1_575f1ff8342a4fb2b5912bb996a2a215
oai_identifier_str oai:ojs.pkp.sfu.ca:article/1812
network_acronym_str CRCSC-1
network_name_str Revista Catarinense da Ciência Contábil (Online)
repository_id_str
spelling Discriminant analysis as a predictive tool of financial difficulties in Brazilian companies in the share marketAnálise Discriminante como Preditiva de Dificuldades Financeiras em Empresas Brasileiras do Mercado AcionárioIndicadores econômico-financeirosDificuldades financeirasAnálise discriminante.Economic and financial indicatorsFinancial difficultiesDiscriminant analysis.The objective of this study is to verify the economic-financial situation of some companies. For that, it is required the joint analysis of their financial statements in order to predict future conditions which will generate results and honor their commitments. This paper aims at estimating discriminant functions for groups of profitable, intermediary and lossmaking companies listed on the BM&FBOVESPA within 2009 and 2011. The methodological procedures used characterize this study as descriptive, documental and quantitative. The data used were collected from the Economática® database. The companies belonging to the financial sector and services were not considered in the analysis and those which did not show the necessary data were excluded, resulting in a sample of 255 organizations. Data analysis was performed by using the SPSS®software, having as the meeting variable the three groups of companies and as explanatory variables the economic-financial indicators of liquidity, profitability and capital structure. Data analysis identified the existence of separation between groups, pointing to the Debt Breakdown as the variable that best represents this separation. Two functions were created; the first one, which segregated the profitable enterprises from the intermediary ones, showed high ability to demonstrate the differences between the two groups; the second discriminant function accounted for only the residual power for segregation between the intermediary and loss-making companies.Verificar a situação econômico-financeira de uma empresa pressupõe a análise conjunta de suas demonstrações contábeis, no intuito de prever as condições futuras de gerar resultados e de honrar seus compromissos. O presente artigo tem como objetivo estimar funções discriminantes para os grupos de empresas lucrativas, intermediárias e deficitárias, listadas na BM&FBOVESPA, no período de 2009 a 2011. Os procedimentos metodológicos utilizados caracterizam o estudo como pesquisa descritiva, documental e quantitativa. Os dados utilizados foram coletados do banco Economática®. As empresas pertencentes ao setor financeiro e de serviços não foram consideradas na análise e aquelas que não apresentaram os dados requeridos foram excluídas, resultando em uma amostra de 255 organizações. A análise dos dados foi efetuada com o uso do software SPSS®, tendo como variável de reunião os três grupos de empresas e como variáveis explicativas os indicadores econômico-financeiros de liquidez, rentabilidade e estrutura de capital. A análise dos dados permitiu identificar a existência de separação entre os grupos, apontando a Composição do Endividamento como a variável que melhor representa essa separação. Duas funções foram criadas. A primeira delas que segrega as empresas lucrativas das intermediárias, apresentou alta capacidade para demonstrar as diferenças entre os grupos. A segunda função discriminante representou apenas o poder residual para segregação entre as empresas intermediárias e as deficitárias.Conselho Regional de Contabilidade de Santa Catarina2024-03-15info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://revista.crcsc.org.br/index.php/CRCSC/article/view/181210.16930/2237-7662/rccc.v12n36p38-52Revista Catarinense da Ciência Contábil; Vol. 12 No. 36 (2013): Agosto-Novembro; p. 38-52Revista Catarinense da Ciência Contábil; v. 12 n. 36 (2013): Agosto-Novembro; p. 38-522237-76621808-3781reponame:Revista Catarinense da Ciência Contábil (Online)instname:Conselho Regional de Contabilidade de Santa Catarina (CRCSC)instacron:CRCSCporhttps://revista.crcsc.org.br/index.php/CRCSC/article/view/1812/1683Copyright (c) 2013 Revista Catarinense da Ciência Contábilhttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessTeixeira, Silvio AparecidoMazzioni, SadyDockhorn, Marcelo da Silva MelloHein, Nelson2024-03-15T18:34:02Zoai:ojs.pkp.sfu.ca:article/1812Revistahttp://www.atena.org.br/revista/ojs-2.2.3-06/index.php/crcscPRIhttp://revista.crcsc.org.br/revista/ojs-2.2.3-06/index.php/CRCSC/oai||revista@crcsc.org.br2237-76621808-3781opendoar:2024-03-15T18:34:02Revista Catarinense da Ciência Contábil (Online) - Conselho Regional de Contabilidade de Santa Catarina (CRCSC)false
dc.title.none.fl_str_mv Discriminant analysis as a predictive tool of financial difficulties in Brazilian companies in the share market
Análise Discriminante como Preditiva de Dificuldades Financeiras em Empresas Brasileiras do Mercado Acionário
title Discriminant analysis as a predictive tool of financial difficulties in Brazilian companies in the share market
spellingShingle Discriminant analysis as a predictive tool of financial difficulties in Brazilian companies in the share market
Teixeira, Silvio Aparecido
Indicadores econômico-financeiros
Dificuldades financeiras
Análise discriminante.
Economic and financial indicators
Financial difficulties
Discriminant analysis.
title_short Discriminant analysis as a predictive tool of financial difficulties in Brazilian companies in the share market
title_full Discriminant analysis as a predictive tool of financial difficulties in Brazilian companies in the share market
title_fullStr Discriminant analysis as a predictive tool of financial difficulties in Brazilian companies in the share market
title_full_unstemmed Discriminant analysis as a predictive tool of financial difficulties in Brazilian companies in the share market
title_sort Discriminant analysis as a predictive tool of financial difficulties in Brazilian companies in the share market
author Teixeira, Silvio Aparecido
author_facet Teixeira, Silvio Aparecido
Mazzioni, Sady
Dockhorn, Marcelo da Silva Mello
Hein, Nelson
author_role author
author2 Mazzioni, Sady
Dockhorn, Marcelo da Silva Mello
Hein, Nelson
author2_role author
author
author
dc.contributor.author.fl_str_mv Teixeira, Silvio Aparecido
Mazzioni, Sady
Dockhorn, Marcelo da Silva Mello
Hein, Nelson
dc.subject.por.fl_str_mv Indicadores econômico-financeiros
Dificuldades financeiras
Análise discriminante.
Economic and financial indicators
Financial difficulties
Discriminant analysis.
topic Indicadores econômico-financeiros
Dificuldades financeiras
Análise discriminante.
Economic and financial indicators
Financial difficulties
Discriminant analysis.
description The objective of this study is to verify the economic-financial situation of some companies. For that, it is required the joint analysis of their financial statements in order to predict future conditions which will generate results and honor their commitments. This paper aims at estimating discriminant functions for groups of profitable, intermediary and lossmaking companies listed on the BM&FBOVESPA within 2009 and 2011. The methodological procedures used characterize this study as descriptive, documental and quantitative. The data used were collected from the Economática® database. The companies belonging to the financial sector and services were not considered in the analysis and those which did not show the necessary data were excluded, resulting in a sample of 255 organizations. Data analysis was performed by using the SPSS®software, having as the meeting variable the three groups of companies and as explanatory variables the economic-financial indicators of liquidity, profitability and capital structure. Data analysis identified the existence of separation between groups, pointing to the Debt Breakdown as the variable that best represents this separation. Two functions were created; the first one, which segregated the profitable enterprises from the intermediary ones, showed high ability to demonstrate the differences between the two groups; the second discriminant function accounted for only the residual power for segregation between the intermediary and loss-making companies.
publishDate 2024
dc.date.none.fl_str_mv 2024-03-15
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://revista.crcsc.org.br/index.php/CRCSC/article/view/1812
10.16930/2237-7662/rccc.v12n36p38-52
url https://revista.crcsc.org.br/index.php/CRCSC/article/view/1812
identifier_str_mv 10.16930/2237-7662/rccc.v12n36p38-52
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://revista.crcsc.org.br/index.php/CRCSC/article/view/1812/1683
dc.rights.driver.fl_str_mv Copyright (c) 2013 Revista Catarinense da Ciência Contábil
https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2013 Revista Catarinense da Ciência Contábil
https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Conselho Regional de Contabilidade de Santa Catarina
publisher.none.fl_str_mv Conselho Regional de Contabilidade de Santa Catarina
dc.source.none.fl_str_mv Revista Catarinense da Ciência Contábil; Vol. 12 No. 36 (2013): Agosto-Novembro; p. 38-52
Revista Catarinense da Ciência Contábil; v. 12 n. 36 (2013): Agosto-Novembro; p. 38-52
2237-7662
1808-3781
reponame:Revista Catarinense da Ciência Contábil (Online)
instname:Conselho Regional de Contabilidade de Santa Catarina (CRCSC)
instacron:CRCSC
instname_str Conselho Regional de Contabilidade de Santa Catarina (CRCSC)
instacron_str CRCSC
institution CRCSC
reponame_str Revista Catarinense da Ciência Contábil (Online)
collection Revista Catarinense da Ciência Contábil (Online)
repository.name.fl_str_mv Revista Catarinense da Ciência Contábil (Online) - Conselho Regional de Contabilidade de Santa Catarina (CRCSC)
repository.mail.fl_str_mv ||revista@crcsc.org.br
_version_ 1809731681655980032