In silico Strategies to Support Fragment-to-Lead Optimization in Drug Discovery
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da FIOCRUZ (ARCA) |
Texto Completo: | https://www.arca.fiocruz.br/handle/icict/42426 |
Resumo: | Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Bioquímica Experimental e Computacional de Fármacos. Rio de Janeiro, RJ, Brasil.. |
id |
CRUZ_00d5d2132a2c8698ef0d9a6363abb6d2 |
---|---|
oai_identifier_str |
oai:www.arca.fiocruz.br:icict/42426 |
network_acronym_str |
CRUZ |
network_name_str |
Repositório Institucional da FIOCRUZ (ARCA) |
repository_id_str |
2135 |
spelling |
Souza Neto, Lauro Ribeiro deMoreira Filho, José TeófiloNeves, Bruno JuniorMaidana, Rocío Lucía Beatriz RiverosGuimarães, Ana Carolina RamosFurnham, NicholasAndrade, Carolina HortaSilva, Floriano Paes2020-07-28T18:28:16Z2020-07-28T18:28:16Z2020SOUZA NETO, Lauro Ribeiro de et al. In silico Strategies to Support Fragment-to-Lead Optimization in Drug Discovery. Frontiers in Chemistry, v.8, Article 93, 18p, Feb. 2020.2296-2646https://www.arca.fiocruz.br/handle/icict/4242610.3389/fchem.2020.00093engFrontiers MediaFragmentosDescoberta de drogasDescoberta de chumboEm métodos silicoAprendizado de máquinaOtimizaçãoFragment-basedDrug discoveryLead discoveryin silico methodsMachine learningDe novo designOptimizationHot spot analysisIn silico Strategies to Support Fragment-to-Lead Optimization in Drug Discoveryinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleFundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Bioquímica Experimental e Computacional de Fármacos. Rio de Janeiro, RJ, Brasil..Universidade Federal de Goiás. Faculdade de Farmácia. LabMol-Laboratório de Modelagem Molecular e Design de Drogas. Goiânia, GO, Brasil.Universidade Federal de Goiás. Faculdade de Farmácia. LabMol-Laboratório de Modelagem Molecular e Design de Drogas. Goiânia, GO, Brasil / Centro Universitário de Anápolis. Laboratory of Cheminformatics. Anápolis, GO, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Bioquímica Experimental e Computacional de Fármacos. Rio de Janeiro, RJ, Brasil / Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Genômica Funcional e Bioinformática. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Genômica Funcional e Bioinformática. Rio de Janeiro, RJ, Brasil.London School of Hygiene and Tropical Medicine. Department of Infection Biology. London, United Kingdom.Universidade Federal de Goiás. Faculdade de Farmácia. LabMol-Laboratório de Modelagem Molecular e Design de Drogas. Goiânia, GO, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Bioquímica Experimental e Computacional de Fármacos. Rio de Janeiro, RJ, Brasil..Fragment-based drug (or lead) discovery (FBDD or FBLD) has developed in the last two decades to become a successful key technology in the pharmaceutical industry for early stage drug discovery and development. The FBDD strategy consists of screening low molecular weight compounds against macromolecular targets (usually proteins) of clinical relevance. These small molecular fragments can bind at one or more sites on the target and act as starting points for the development of lead compounds. In developing the fragments attractive features that can translate into compounds with favorable physical, pharmacokinetics and toxicity (ADMET-absorption, distribution, metabolism, excretion, and toxicity) properties can be integrated. Structure-enabled fragment screening campaigns use a combination of screening by a range of biophysical techniques, such as differential scanning fluorimetry, surface plasmon resonance, and thermophoresis, followed by structural characterization of fragment binding using NMR or X-ray crystallography. Structural characterization is also used in subsequent analysis for growing fragments of selected screening hits. The latest iteration of the FBDD workflow employs a high-throughput methodology of massively parallel screening by X-ray crystallography of individually soaked fragments. In this review we will outline the FBDD strategies and explore a variety of in silico approaches to support the follow-up fragment-to-lead optimization of either: growing, linking, and merging. These fragment expansion strategies include hot spot analysis, druggability prediction, SAR (structure-activity relationships) by catalog methods, application of machine learning/deep learning models for virtual screening and several de novo design methods for proposing synthesizable new compounds. Finally, we will highlight recent case studies in fragment-based drug discovery where in silico methods have successfully contributed to the development of lead compounds.info:eu-repo/semantics/openAccessreponame:Repositório Institucional da FIOCRUZ (ARCA)instname:Fundação Oswaldo Cruz (FIOCRUZ)instacron:FIOCRUZLICENSElicense.txtlicense.txttext/plain; charset=utf-82991https://www.arca.fiocruz.br/bitstream/icict/42426/1/license.txt5a560609d32a3863062d77ff32785d58MD51ORIGINALFlorianoPJR_LuciaR_Maidana_etal_IOC_2020.pdfFlorianoPJR_LuciaR_Maidana_etal_IOC_2020.pdfapplication/pdf1683853https://www.arca.fiocruz.br/bitstream/icict/42426/2/FlorianoPJR_LuciaR_Maidana_etal_IOC_2020.pdf83432d6fdf289749cc3ff6762f2a8a51MD52TEXTFlorianoPJR_LuciaR_Maidana_etal_IOC_2020.pdf.txtFlorianoPJR_LuciaR_Maidana_etal_IOC_2020.pdf.txtExtracted texttext/plain91915https://www.arca.fiocruz.br/bitstream/icict/42426/3/FlorianoPJR_LuciaR_Maidana_etal_IOC_2020.pdf.txtd020d664d6a2934c72b9fa7aa100be35MD53icict/424262020-07-29 02:03:01.119oai:www.arca.fiocruz.br:icict/42426Q0VTU8ODTyBOw4NPIEVYQ0xVU0lWQSBERSBESVJFSVRPUyBBVVRPUkFJUwoKQW8gYWNlaXRhciBvcyBURVJNT1MgZSBDT05EScOHw5VFUyBkZXN0YSBDRVNTw4NPLCBvIEFVVE9SIGUvb3UgVElUVUxBUiBkZSBkaXJlaXRvcwphdXRvcmFpcyBzb2JyZSBhIE9CUkEgZGUgcXVlIHRyYXRhIGVzdGUgZG9jdW1lbnRvOgoKKDEpIENFREUgZSBUUkFOU0ZFUkUsIHRvdGFsIGUgZ3JhdHVpdGFtZW50ZSwgw6AgRklPQ1JVWiAtIEZVTkRBw4fDg08gT1NXQUxETyBDUlVaLCBlbQpjYXLDoXRlciBwZXJtYW5lbnRlLCBpcnJldm9nw6F2ZWwgZSBOw4NPIEVYQ0xVU0lWTywgdG9kb3Mgb3MgZGlyZWl0b3MgcGF0cmltb25pYWlzIE7Dg08KQ09NRVJDSUFJUyBkZSB1dGlsaXphw6fDo28gZGEgT0JSQSBhcnTDrXN0aWNhIGUvb3UgY2llbnTDrWZpY2EgaW5kaWNhZGEgYWNpbWEsIGluY2x1c2l2ZSBvcyBkaXJlaXRvcwpkZSB2b3ogZSBpbWFnZW0gdmluY3VsYWRvcyDDoCBPQlJBLCBkdXJhbnRlIHRvZG8gbyBwcmF6byBkZSBkdXJhw6fDo28gZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCBlbQpxdWFscXVlciBpZGlvbWEgZSBlbSB0b2RvcyBvcyBwYcOtc2VzOwoKKDIpIEFDRUlUQSBxdWUgYSBjZXNzw6NvIHRvdGFsIG7Do28gZXhjbHVzaXZhLCBwZXJtYW5lbnRlIGUgaXJyZXZvZ8OhdmVsIGRvcyBkaXJlaXRvcyBhdXRvcmFpcwpwYXRyaW1vbmlhaXMgbsOjbyBjb21lcmNpYWlzIGRlIHV0aWxpemHDp8OjbyBkZSBxdWUgdHJhdGEgZXN0ZSBkb2N1bWVudG8gaW5jbHVpLCBleGVtcGxpZmljYXRpdmFtZW50ZSwKb3MgZGlyZWl0b3MgZGUgZGlzcG9uaWJpbGl6YcOnw6NvIGUgY29tdW5pY2HDp8OjbyBww7pibGljYSBkYSBPQlJBLCBlbSBxdWFscXVlciBtZWlvIG91IHZlw61jdWxvLAppbmNsdXNpdmUgZW0gUmVwb3NpdMOzcmlvcyBEaWdpdGFpcywgYmVtIGNvbW8gb3MgZGlyZWl0b3MgZGUgcmVwcm9kdcOnw6NvLCBleGliacOnw6NvLCBleGVjdcOnw6NvLApkZWNsYW1hw6fDo28sIHJlY2l0YcOnw6NvLCBleHBvc2nDp8OjbywgYXJxdWl2YW1lbnRvLCBpbmNsdXPDo28gZW0gYmFuY28gZGUgZGFkb3MsIHByZXNlcnZhw6fDo28sIGRpZnVzw6NvLApkaXN0cmlidWnDp8OjbywgZGl2dWxnYcOnw6NvLCBlbXByw6lzdGltbywgdHJhZHXDp8OjbywgZHVibGFnZW0sIGxlZ2VuZGFnZW0sIGluY2x1c8OjbyBlbSBub3ZhcyBvYnJhcyBvdQpjb2xldMOibmVhcywgcmV1dGlsaXphw6fDo28sIGVkacOnw6NvLCBwcm9kdcOnw6NvIGRlIG1hdGVyaWFsIGRpZMOhdGljbyBlIGN1cnNvcyBvdSBxdWFscXVlciBmb3JtYSBkZQp1dGlsaXphw6fDo28gbsOjbyBjb21lcmNpYWw7CgooMykgUkVDT05IRUNFIHF1ZSBhIGNlc3PDo28gYXF1aSBlc3BlY2lmaWNhZGEgY29uY2VkZSDDoCBGSU9DUlVaIC0gRlVOREHDh8ODTyBPU1dBTERPCkNSVVogbyBkaXJlaXRvIGRlIGF1dG9yaXphciBxdWFscXVlciBwZXNzb2Eg4oCTIGbDrXNpY2Egb3UganVyw61kaWNhLCBww7pibGljYSBvdSBwcml2YWRhLCBuYWNpb25hbCBvdQplc3RyYW5nZWlyYSDigJMgYSBhY2Vzc2FyIGUgdXRpbGl6YXIgYW1wbGFtZW50ZSBhIE9CUkEsIHNlbSBleGNsdXNpdmlkYWRlLCBwYXJhIHF1YWlzcXVlcgpmaW5hbGlkYWRlcyBuw6NvIGNvbWVyY2lhaXM7CgooNCkgREVDTEFSQSBxdWUgYSBvYnJhIMOpIGNyaWHDp8OjbyBvcmlnaW5hbCBlIHF1ZSDDqSBvIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGFxdWkgY2VkaWRvcyBlIGF1dG9yaXphZG9zLApyZXNwb25zYWJpbGl6YW5kby1zZSBpbnRlZ3JhbG1lbnRlIHBlbG8gY29udGXDumRvIGUgb3V0cm9zIGVsZW1lbnRvcyBxdWUgZmF6ZW0gcGFydGUgZGEgT0JSQSwKaW5jbHVzaXZlIG9zIGRpcmVpdG9zIGRlIHZveiBlIGltYWdlbSB2aW5jdWxhZG9zIMOgIE9CUkEsIG9icmlnYW5kby1zZSBhIGluZGVuaXphciB0ZXJjZWlyb3MgcG9yCmRhbm9zLCBiZW0gY29tbyBpbmRlbml6YXIgZSByZXNzYXJjaXIgYSBGSU9DUlVaIC0gRlVOREHDh8ODTyBPU1dBTERPIENSVVogZGUKZXZlbnR1YWlzIGRlc3Blc2FzIHF1ZSB2aWVyZW0gYSBzdXBvcnRhciwgZW0gcmF6w6NvIGRlIHF1YWxxdWVyIG9mZW5zYSBhIGRpcmVpdG9zIGF1dG9yYWlzIG91CmRpcmVpdG9zIGRlIHZveiBvdSBpbWFnZW0sIHByaW5jaXBhbG1lbnRlIG5vIHF1ZSBkaXogcmVzcGVpdG8gYSBwbMOhZ2lvIGUgdmlvbGHDp8O1ZXMgZGUgZGlyZWl0b3M7CgooNSkgQUZJUk1BIHF1ZSBjb25oZWNlIGEgUG9sw610aWNhIEluc3RpdHVjaW9uYWwgZGUgQWNlc3NvIEFiZXJ0byBkYSBGSU9DUlVaIC0gRlVOREHDh8ODTwpPU1dBTERPIENSVVogZSBhcyBkaXJldHJpemVzIHBhcmEgbyBmdW5jaW9uYW1lbnRvIGRvIHJlcG9zaXTDs3JpbyBpbnN0aXR1Y2lvbmFsIEFSQ0EuCgpBIFBvbMOtdGljYSBJbnN0aXR1Y2lvbmFsIGRlIEFjZXNzbyBBYmVydG8gZGEgRklPQ1JVWiAtIEZVTkRBw4fDg08gT1NXQUxETyBDUlVaIHJlc2VydmEKZXhjbHVzaXZhbWVudGUgYW8gQVVUT1Igb3MgZGlyZWl0b3MgbW9yYWlzIGUgb3MgdXNvcyBjb21lcmNpYWlzIHNvYnJlIGFzIG9icmFzIGRlIHN1YSBhdXRvcmlhCmUvb3UgdGl0dWxhcmlkYWRlLCBzZW5kbyBvcyB0ZXJjZWlyb3MgdXN1w6FyaW9zIHJlc3BvbnPDoXZlaXMgcGVsYSBhdHJpYnVpw6fDo28gZGUgYXV0b3JpYSBlIG1hbnV0ZW7Dp8OjbwpkYSBpbnRlZ3JpZGFkZSBkYSBPQlJBIGVtIHF1YWxxdWVyIHV0aWxpemHDp8Ojby4KCkEgUG9sw610aWNhIEluc3RpdHVjaW9uYWwgZGUgQWNlc3NvIEFiZXJ0byBkYSBGSU9DUlVaIC0gRlVOREHDh8ODTyBPU1dBTERPIENSVVoKcmVzcGVpdGEgb3MgY29udHJhdG9zIGUgYWNvcmRvcyBwcmVleGlzdGVudGVzIGRvcyBBdXRvcmVzIGNvbSB0ZXJjZWlyb3MsIGNhYmVuZG8gYW9zIEF1dG9yZXMKaW5mb3JtYXIgw6AgSW5zdGl0dWnDp8OjbyBhcyBjb25kacOnw7VlcyBlIG91dHJhcyByZXN0cmnDp8O1ZXMgaW1wb3N0YXMgcG9yIGVzdGVzIGluc3RydW1lbnRvcy4KRepositório InstitucionalPUBhttps://www.arca.fiocruz.br/oai/requestrepositorio.arca@fiocruz.bropendoar:21352020-07-29T05:03:01Repositório Institucional da FIOCRUZ (ARCA) - Fundação Oswaldo Cruz (FIOCRUZ)false |
dc.title.pt_BR.fl_str_mv |
In silico Strategies to Support Fragment-to-Lead Optimization in Drug Discovery |
title |
In silico Strategies to Support Fragment-to-Lead Optimization in Drug Discovery |
spellingShingle |
In silico Strategies to Support Fragment-to-Lead Optimization in Drug Discovery Souza Neto, Lauro Ribeiro de Fragmentos Descoberta de drogas Descoberta de chumbo Em métodos silico Aprendizado de máquina Otimização Fragment-based Drug discovery Lead discovery in silico methods Machine learning De novo design Optimization Hot spot analysis |
title_short |
In silico Strategies to Support Fragment-to-Lead Optimization in Drug Discovery |
title_full |
In silico Strategies to Support Fragment-to-Lead Optimization in Drug Discovery |
title_fullStr |
In silico Strategies to Support Fragment-to-Lead Optimization in Drug Discovery |
title_full_unstemmed |
In silico Strategies to Support Fragment-to-Lead Optimization in Drug Discovery |
title_sort |
In silico Strategies to Support Fragment-to-Lead Optimization in Drug Discovery |
author |
Souza Neto, Lauro Ribeiro de |
author_facet |
Souza Neto, Lauro Ribeiro de Moreira Filho, José Teófilo Neves, Bruno Junior Maidana, Rocío Lucía Beatriz Riveros Guimarães, Ana Carolina Ramos Furnham, Nicholas Andrade, Carolina Horta Silva, Floriano Paes |
author_role |
author |
author2 |
Moreira Filho, José Teófilo Neves, Bruno Junior Maidana, Rocío Lucía Beatriz Riveros Guimarães, Ana Carolina Ramos Furnham, Nicholas Andrade, Carolina Horta Silva, Floriano Paes |
author2_role |
author author author author author author author |
dc.contributor.author.fl_str_mv |
Souza Neto, Lauro Ribeiro de Moreira Filho, José Teófilo Neves, Bruno Junior Maidana, Rocío Lucía Beatriz Riveros Guimarães, Ana Carolina Ramos Furnham, Nicholas Andrade, Carolina Horta Silva, Floriano Paes |
dc.subject.other.pt_BR.fl_str_mv |
Fragmentos Descoberta de drogas Descoberta de chumbo Em métodos silico Aprendizado de máquina Otimização |
topic |
Fragmentos Descoberta de drogas Descoberta de chumbo Em métodos silico Aprendizado de máquina Otimização Fragment-based Drug discovery Lead discovery in silico methods Machine learning De novo design Optimization Hot spot analysis |
dc.subject.en.pt_BR.fl_str_mv |
Fragment-based Drug discovery Lead discovery in silico methods Machine learning De novo design Optimization Hot spot analysis |
description |
Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Bioquímica Experimental e Computacional de Fármacos. Rio de Janeiro, RJ, Brasil.. |
publishDate |
2020 |
dc.date.accessioned.fl_str_mv |
2020-07-28T18:28:16Z |
dc.date.available.fl_str_mv |
2020-07-28T18:28:16Z |
dc.date.issued.fl_str_mv |
2020 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
SOUZA NETO, Lauro Ribeiro de et al. In silico Strategies to Support Fragment-to-Lead Optimization in Drug Discovery. Frontiers in Chemistry, v.8, Article 93, 18p, Feb. 2020. |
dc.identifier.uri.fl_str_mv |
https://www.arca.fiocruz.br/handle/icict/42426 |
dc.identifier.issn.pt_BR.fl_str_mv |
2296-2646 |
dc.identifier.doi.none.fl_str_mv |
10.3389/fchem.2020.00093 |
identifier_str_mv |
SOUZA NETO, Lauro Ribeiro de et al. In silico Strategies to Support Fragment-to-Lead Optimization in Drug Discovery. Frontiers in Chemistry, v.8, Article 93, 18p, Feb. 2020. 2296-2646 10.3389/fchem.2020.00093 |
url |
https://www.arca.fiocruz.br/handle/icict/42426 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Frontiers Media |
publisher.none.fl_str_mv |
Frontiers Media |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da FIOCRUZ (ARCA) instname:Fundação Oswaldo Cruz (FIOCRUZ) instacron:FIOCRUZ |
instname_str |
Fundação Oswaldo Cruz (FIOCRUZ) |
instacron_str |
FIOCRUZ |
institution |
FIOCRUZ |
reponame_str |
Repositório Institucional da FIOCRUZ (ARCA) |
collection |
Repositório Institucional da FIOCRUZ (ARCA) |
bitstream.url.fl_str_mv |
https://www.arca.fiocruz.br/bitstream/icict/42426/1/license.txt https://www.arca.fiocruz.br/bitstream/icict/42426/2/FlorianoPJR_LuciaR_Maidana_etal_IOC_2020.pdf https://www.arca.fiocruz.br/bitstream/icict/42426/3/FlorianoPJR_LuciaR_Maidana_etal_IOC_2020.pdf.txt |
bitstream.checksum.fl_str_mv |
5a560609d32a3863062d77ff32785d58 83432d6fdf289749cc3ff6762f2a8a51 d020d664d6a2934c72b9fa7aa100be35 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da FIOCRUZ (ARCA) - Fundação Oswaldo Cruz (FIOCRUZ) |
repository.mail.fl_str_mv |
repositorio.arca@fiocruz.br |
_version_ |
1813008980549566464 |