Leveraging the partition selection bias to achieve a high-quality clustering of mass spectra
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da FIOCRUZ (ARCA) |
Texto Completo: | https://www.arca.fiocruz.br/handle/icict/51188 |
Resumo: | Fiocruz Paraná. Instituto Carlos Chagas. Laboratório de Proteômica Estrutural e Computacional. Curitiba, PR, Brasil. |
id |
CRUZ_0bd31213bfc333c3b35c57c9f0dc3d80 |
---|---|
oai_identifier_str |
oai:www.arca.fiocruz.br:icict/51188 |
network_acronym_str |
CRUZ |
network_name_str |
Repositório Institucional da FIOCRUZ (ARCA) |
repository_id_str |
2135 |
spelling |
Silva, André R.F.Lima, Diogo B.Kurt, Louise U.Dupré, MathieuChamot-Rooke, JuliaSantos, Marlon D.M.Nicolau, Carolina AlvesValente, Richard HemmiBarbosa, Valmir C.Carvalho, Paulo C.2022-02-14T20:01:45Z2022-02-14T20:01:45Z2021SILVA, André R. F. et al. Leveraging the partition selection bias to achieve a high-quality clustering of mass spectra. Journal of Proteomics, v. 245, 104282, p. 1 - 8, June 2021.1874-3919https://www.arca.fiocruz.br/handle/icict/5118810.1016/j.jprot.2021.104282engElsevierAgrupamentoEspectros de massa em tandemFerramenta de avaliação de partiçãoClusteringTandem mass spectraPartition assessment toolLeveraging the partition selection bias to achieve a high-quality clustering of mass spectrainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleFiocruz Paraná. Instituto Carlos Chagas. Laboratório de Proteômica Estrutural e Computacional. Curitiba, PR, Brasil.Department of Chemical Biology, Leibniz – Forschungsinstitut für Molekulare Pharmakologie (FMP). Berlin, Germany.Fiocruz Paraná. Instituto Carlos Chagas. Laboratório de Proteômica Estrutural e Computacional. Curitiba, PR, Brasil.Mass Spectrometry for Biology Unit, CNRS USR 2000. Institut Pasteur, Paris, France.Mass Spectrometry for Biology Unit, CNRS USR 2000. Institut Pasteur, Paris, France.Fiocruz Paraná. Instituto Carlos Chagas. Laboratório de Proteômica Estrutural e Computacional. Curitiba, PR, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Toxinologia. Rio de Janeiro, RJ, Brasil / Centre de Recherche en Cancérologie et Immunologie Nantes-Angers (CRCINA), Team SOAP, INSERM U1232. Nantes, France.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Toxinologia. Rio de Janeiro, RJ, Brasil.Universidade Federal do Rio de Janeiro. Programa de Engenharia de Sistemas e Ciência da Computação. Rio de Janeiro, RJ, Brasi..Fiocruz Paraná. Instituto Carlos Chagas. Laboratório de Proteômica Estrutural e Computacional. Curitiba, PR, Brasil.In proteomics, the identification of peptides from mass spectral data can be mathematically described as the partitioning of mass spectra into clusters (i.e., groups of spectra derived from the same peptide). The way partitions are validated is just as important, having evolved side by side with the clustering algorithms themselves and given rise to many partition assessment measures. An assessment measure is said to have a selection bias if, and only if, the probability that a randomly chosen partition scoring a high value depends on the number of clusters in the partition. In the context of clustering mass spectra, this might mislead the validation process to favor clustering algorithms that generate too many (or few) spectral clusters, regardless of the underlying peptide sequence. A selection bias toward the number of peptides is desirable for proteomics as it estimates the number of peptides in a complex protein mixture. Here, we introduce an assessment measure that is purposely biased toward the number of peptide ion species. We also introduce a partition assessment framework for proteomics, called the Partition Assessment Tool, and demonstrate its importance by evaluating the performance of eight clustering algorithms on seven proteomics datasets while discussing the trade-offs involved. Significance: Clustering algorithms are widely adopted in proteomics for undertaking several tasks such as speeding up search engines, generating consensus mass spectra, and to aid in the classification of proteomic profiles. Choosing which algorithm is most fit for the task at hand is not simple as each algorithm has advantages and disadvantages; furthermore, specifying clustering parameters is also a necessary and fundamental step. For example, deciding on whether to generate “pure clusters” or fewer clusters but accepting noise. With this as motivation, we verify the performance of several widely adopted algorithms on proteomic datasets and introduce a theoretical framework for drawing conclusions on which approach is suitable for the task at hand.info:eu-repo/semantics/openAccessreponame:Repositório Institucional da FIOCRUZ (ARCA)instname:Fundação Oswaldo Cruz (FIOCRUZ)instacron:FIOCRUZLICENSElicense.txtlicense.txttext/plain; charset=utf-82991https://www.arca.fiocruz.br/bitstream/icict/51188/1/license.txt5a560609d32a3863062d77ff32785d58MD51ORIGINALRichardHValente_CarolinaNicolaru_etal_IOC_2021.pdfRichardHValente_CarolinaNicolaru_etal_IOC_2021.pdfapplication/pdf1679791https://www.arca.fiocruz.br/bitstream/icict/51188/2/RichardHValente_CarolinaNicolaru_etal_IOC_2021.pdfe382cc815f1f9db6393229c953f4bf08MD52icict/511882022-02-14 17:01:45.918oai:www.arca.fiocruz.br:icict/51188Q0VTU8ODTyBOw4NPIEVYQ0xVU0lWQSBERSBESVJFSVRPUyBBVVRPUkFJUwoKQW8gYWNlaXRhciBvcyBURVJNT1MgZSBDT05EScOHw5VFUyBkZXN0YSBDRVNTw4NPLCBvIEFVVE9SIGUvb3UgVElUVUxBUiBkZSBkaXJlaXRvcwphdXRvcmFpcyBzb2JyZSBhIE9CUkEgZGUgcXVlIHRyYXRhIGVzdGUgZG9jdW1lbnRvOgoKKDEpIENFREUgZSBUUkFOU0ZFUkUsIHRvdGFsIGUgZ3JhdHVpdGFtZW50ZSwgw6AgRklPQ1JVWiAtIEZVTkRBw4fDg08gT1NXQUxETyBDUlVaLCBlbQpjYXLDoXRlciBwZXJtYW5lbnRlLCBpcnJldm9nw6F2ZWwgZSBOw4NPIEVYQ0xVU0lWTywgdG9kb3Mgb3MgZGlyZWl0b3MgcGF0cmltb25pYWlzIE7Dg08KQ09NRVJDSUFJUyBkZSB1dGlsaXphw6fDo28gZGEgT0JSQSBhcnTDrXN0aWNhIGUvb3UgY2llbnTDrWZpY2EgaW5kaWNhZGEgYWNpbWEsIGluY2x1c2l2ZSBvcyBkaXJlaXRvcwpkZSB2b3ogZSBpbWFnZW0gdmluY3VsYWRvcyDDoCBPQlJBLCBkdXJhbnRlIHRvZG8gbyBwcmF6byBkZSBkdXJhw6fDo28gZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCBlbQpxdWFscXVlciBpZGlvbWEgZSBlbSB0b2RvcyBvcyBwYcOtc2VzOwoKKDIpIEFDRUlUQSBxdWUgYSBjZXNzw6NvIHRvdGFsIG7Do28gZXhjbHVzaXZhLCBwZXJtYW5lbnRlIGUgaXJyZXZvZ8OhdmVsIGRvcyBkaXJlaXRvcyBhdXRvcmFpcwpwYXRyaW1vbmlhaXMgbsOjbyBjb21lcmNpYWlzIGRlIHV0aWxpemHDp8OjbyBkZSBxdWUgdHJhdGEgZXN0ZSBkb2N1bWVudG8gaW5jbHVpLCBleGVtcGxpZmljYXRpdmFtZW50ZSwKb3MgZGlyZWl0b3MgZGUgZGlzcG9uaWJpbGl6YcOnw6NvIGUgY29tdW5pY2HDp8OjbyBww7pibGljYSBkYSBPQlJBLCBlbSBxdWFscXVlciBtZWlvIG91IHZlw61jdWxvLAppbmNsdXNpdmUgZW0gUmVwb3NpdMOzcmlvcyBEaWdpdGFpcywgYmVtIGNvbW8gb3MgZGlyZWl0b3MgZGUgcmVwcm9kdcOnw6NvLCBleGliacOnw6NvLCBleGVjdcOnw6NvLApkZWNsYW1hw6fDo28sIHJlY2l0YcOnw6NvLCBleHBvc2nDp8OjbywgYXJxdWl2YW1lbnRvLCBpbmNsdXPDo28gZW0gYmFuY28gZGUgZGFkb3MsIHByZXNlcnZhw6fDo28sIGRpZnVzw6NvLApkaXN0cmlidWnDp8OjbywgZGl2dWxnYcOnw6NvLCBlbXByw6lzdGltbywgdHJhZHXDp8OjbywgZHVibGFnZW0sIGxlZ2VuZGFnZW0sIGluY2x1c8OjbyBlbSBub3ZhcyBvYnJhcyBvdQpjb2xldMOibmVhcywgcmV1dGlsaXphw6fDo28sIGVkacOnw6NvLCBwcm9kdcOnw6NvIGRlIG1hdGVyaWFsIGRpZMOhdGljbyBlIGN1cnNvcyBvdSBxdWFscXVlciBmb3JtYSBkZQp1dGlsaXphw6fDo28gbsOjbyBjb21lcmNpYWw7CgooMykgUkVDT05IRUNFIHF1ZSBhIGNlc3PDo28gYXF1aSBlc3BlY2lmaWNhZGEgY29uY2VkZSDDoCBGSU9DUlVaIC0gRlVOREHDh8ODTyBPU1dBTERPCkNSVVogbyBkaXJlaXRvIGRlIGF1dG9yaXphciBxdWFscXVlciBwZXNzb2Eg4oCTIGbDrXNpY2Egb3UganVyw61kaWNhLCBww7pibGljYSBvdSBwcml2YWRhLCBuYWNpb25hbCBvdQplc3RyYW5nZWlyYSDigJMgYSBhY2Vzc2FyIGUgdXRpbGl6YXIgYW1wbGFtZW50ZSBhIE9CUkEsIHNlbSBleGNsdXNpdmlkYWRlLCBwYXJhIHF1YWlzcXVlcgpmaW5hbGlkYWRlcyBuw6NvIGNvbWVyY2lhaXM7CgooNCkgREVDTEFSQSBxdWUgYSBvYnJhIMOpIGNyaWHDp8OjbyBvcmlnaW5hbCBlIHF1ZSDDqSBvIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGFxdWkgY2VkaWRvcyBlIGF1dG9yaXphZG9zLApyZXNwb25zYWJpbGl6YW5kby1zZSBpbnRlZ3JhbG1lbnRlIHBlbG8gY29udGXDumRvIGUgb3V0cm9zIGVsZW1lbnRvcyBxdWUgZmF6ZW0gcGFydGUgZGEgT0JSQSwKaW5jbHVzaXZlIG9zIGRpcmVpdG9zIGRlIHZveiBlIGltYWdlbSB2aW5jdWxhZG9zIMOgIE9CUkEsIG9icmlnYW5kby1zZSBhIGluZGVuaXphciB0ZXJjZWlyb3MgcG9yCmRhbm9zLCBiZW0gY29tbyBpbmRlbml6YXIgZSByZXNzYXJjaXIgYSBGSU9DUlVaIC0gRlVOREHDh8ODTyBPU1dBTERPIENSVVogZGUKZXZlbnR1YWlzIGRlc3Blc2FzIHF1ZSB2aWVyZW0gYSBzdXBvcnRhciwgZW0gcmF6w6NvIGRlIHF1YWxxdWVyIG9mZW5zYSBhIGRpcmVpdG9zIGF1dG9yYWlzIG91CmRpcmVpdG9zIGRlIHZveiBvdSBpbWFnZW0sIHByaW5jaXBhbG1lbnRlIG5vIHF1ZSBkaXogcmVzcGVpdG8gYSBwbMOhZ2lvIGUgdmlvbGHDp8O1ZXMgZGUgZGlyZWl0b3M7CgooNSkgQUZJUk1BIHF1ZSBjb25oZWNlIGEgUG9sw610aWNhIEluc3RpdHVjaW9uYWwgZGUgQWNlc3NvIEFiZXJ0byBkYSBGSU9DUlVaIC0gRlVOREHDh8ODTwpPU1dBTERPIENSVVogZSBhcyBkaXJldHJpemVzIHBhcmEgbyBmdW5jaW9uYW1lbnRvIGRvIHJlcG9zaXTDs3JpbyBpbnN0aXR1Y2lvbmFsIEFSQ0EuCgpBIFBvbMOtdGljYSBJbnN0aXR1Y2lvbmFsIGRlIEFjZXNzbyBBYmVydG8gZGEgRklPQ1JVWiAtIEZVTkRBw4fDg08gT1NXQUxETyBDUlVaIHJlc2VydmEKZXhjbHVzaXZhbWVudGUgYW8gQVVUT1Igb3MgZGlyZWl0b3MgbW9yYWlzIGUgb3MgdXNvcyBjb21lcmNpYWlzIHNvYnJlIGFzIG9icmFzIGRlIHN1YSBhdXRvcmlhCmUvb3UgdGl0dWxhcmlkYWRlLCBzZW5kbyBvcyB0ZXJjZWlyb3MgdXN1w6FyaW9zIHJlc3BvbnPDoXZlaXMgcGVsYSBhdHJpYnVpw6fDo28gZGUgYXV0b3JpYSBlIG1hbnV0ZW7Dp8OjbwpkYSBpbnRlZ3JpZGFkZSBkYSBPQlJBIGVtIHF1YWxxdWVyIHV0aWxpemHDp8Ojby4KCkEgUG9sw610aWNhIEluc3RpdHVjaW9uYWwgZGUgQWNlc3NvIEFiZXJ0byBkYSBGSU9DUlVaIC0gRlVOREHDh8ODTyBPU1dBTERPIENSVVoKcmVzcGVpdGEgb3MgY29udHJhdG9zIGUgYWNvcmRvcyBwcmVleGlzdGVudGVzIGRvcyBBdXRvcmVzIGNvbSB0ZXJjZWlyb3MsIGNhYmVuZG8gYW9zIEF1dG9yZXMKaW5mb3JtYXIgw6AgSW5zdGl0dWnDp8OjbyBhcyBjb25kacOnw7VlcyBlIG91dHJhcyByZXN0cmnDp8O1ZXMgaW1wb3N0YXMgcG9yIGVzdGVzIGluc3RydW1lbnRvcy4KRepositório InstitucionalPUBhttps://www.arca.fiocruz.br/oai/requestrepositorio.arca@fiocruz.bropendoar:21352022-02-14T20:01:45Repositório Institucional da FIOCRUZ (ARCA) - Fundação Oswaldo Cruz (FIOCRUZ)false |
dc.title.pt_BR.fl_str_mv |
Leveraging the partition selection bias to achieve a high-quality clustering of mass spectra |
title |
Leveraging the partition selection bias to achieve a high-quality clustering of mass spectra |
spellingShingle |
Leveraging the partition selection bias to achieve a high-quality clustering of mass spectra Silva, André R.F. Agrupamento Espectros de massa em tandem Ferramenta de avaliação de partição Clustering Tandem mass spectra Partition assessment tool |
title_short |
Leveraging the partition selection bias to achieve a high-quality clustering of mass spectra |
title_full |
Leveraging the partition selection bias to achieve a high-quality clustering of mass spectra |
title_fullStr |
Leveraging the partition selection bias to achieve a high-quality clustering of mass spectra |
title_full_unstemmed |
Leveraging the partition selection bias to achieve a high-quality clustering of mass spectra |
title_sort |
Leveraging the partition selection bias to achieve a high-quality clustering of mass spectra |
author |
Silva, André R.F. |
author_facet |
Silva, André R.F. Lima, Diogo B. Kurt, Louise U. Dupré, Mathieu Chamot-Rooke, Julia Santos, Marlon D.M. Nicolau, Carolina Alves Valente, Richard Hemmi Barbosa, Valmir C. Carvalho, Paulo C. |
author_role |
author |
author2 |
Lima, Diogo B. Kurt, Louise U. Dupré, Mathieu Chamot-Rooke, Julia Santos, Marlon D.M. Nicolau, Carolina Alves Valente, Richard Hemmi Barbosa, Valmir C. Carvalho, Paulo C. |
author2_role |
author author author author author author author author author |
dc.contributor.author.fl_str_mv |
Silva, André R.F. Lima, Diogo B. Kurt, Louise U. Dupré, Mathieu Chamot-Rooke, Julia Santos, Marlon D.M. Nicolau, Carolina Alves Valente, Richard Hemmi Barbosa, Valmir C. Carvalho, Paulo C. |
dc.subject.other.pt_BR.fl_str_mv |
Agrupamento Espectros de massa em tandem Ferramenta de avaliação de partição |
topic |
Agrupamento Espectros de massa em tandem Ferramenta de avaliação de partição Clustering Tandem mass spectra Partition assessment tool |
dc.subject.en.pt_BR.fl_str_mv |
Clustering Tandem mass spectra Partition assessment tool |
description |
Fiocruz Paraná. Instituto Carlos Chagas. Laboratório de Proteômica Estrutural e Computacional. Curitiba, PR, Brasil. |
publishDate |
2021 |
dc.date.issued.fl_str_mv |
2021 |
dc.date.accessioned.fl_str_mv |
2022-02-14T20:01:45Z |
dc.date.available.fl_str_mv |
2022-02-14T20:01:45Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
SILVA, André R. F. et al. Leveraging the partition selection bias to achieve a high-quality clustering of mass spectra. Journal of Proteomics, v. 245, 104282, p. 1 - 8, June 2021. |
dc.identifier.uri.fl_str_mv |
https://www.arca.fiocruz.br/handle/icict/51188 |
dc.identifier.issn.pt_BR.fl_str_mv |
1874-3919 |
dc.identifier.doi.none.fl_str_mv |
10.1016/j.jprot.2021.104282 |
identifier_str_mv |
SILVA, André R. F. et al. Leveraging the partition selection bias to achieve a high-quality clustering of mass spectra. Journal of Proteomics, v. 245, 104282, p. 1 - 8, June 2021. 1874-3919 10.1016/j.jprot.2021.104282 |
url |
https://www.arca.fiocruz.br/handle/icict/51188 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da FIOCRUZ (ARCA) instname:Fundação Oswaldo Cruz (FIOCRUZ) instacron:FIOCRUZ |
instname_str |
Fundação Oswaldo Cruz (FIOCRUZ) |
instacron_str |
FIOCRUZ |
institution |
FIOCRUZ |
reponame_str |
Repositório Institucional da FIOCRUZ (ARCA) |
collection |
Repositório Institucional da FIOCRUZ (ARCA) |
bitstream.url.fl_str_mv |
https://www.arca.fiocruz.br/bitstream/icict/51188/1/license.txt https://www.arca.fiocruz.br/bitstream/icict/51188/2/RichardHValente_CarolinaNicolaru_etal_IOC_2021.pdf |
bitstream.checksum.fl_str_mv |
5a560609d32a3863062d77ff32785d58 e382cc815f1f9db6393229c953f4bf08 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da FIOCRUZ (ARCA) - Fundação Oswaldo Cruz (FIOCRUZ) |
repository.mail.fl_str_mv |
repositorio.arca@fiocruz.br |
_version_ |
1813008869004148736 |