Estudo da relação entre homeostase de ferro, estresse oxidativo e inflamação: do modelo molecular ao treinamento de força periodizado e não periodizado

Detalhes bibliográficos
Autor(a) principal: Sampaio, Ricardo Camões
Data de Publicação: 2019
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório do Centro Universitário Braz Cubas
Texto Completo: http://repositorio.cruzeirodosul.edu.br/handle/123456789/319
Resumo: Iron is the most abundant essential metal in living organisms and it has a fundamental physiological and metabolic roles in animals and humans. On the other hand, iron might be harmful when its homeostasis is disturbed, as iron ions are main catalysts for the formation of Reactive Oxygen and Nitrogen Species (RONS). The aim of this study was to investigate the relationship between iron homeostasis, physiological markers, and inflammatory cytokines in strength training subjects (ST). The study also addressed molecular in vitro aspects, by simulating resting or exhaustion conditions in plasma (or interstitial) after ST practice, focusing on the catalysis of heme proteins, hemoglobin and myoglobin, in the oxidative insult. Twenty-six male subjects, between 20 to 45 years-old, were divided in 3 training groups: linear periodized training (PL), non-linear periodization (PNL) and non-periodized (NP), for 10 consecutive weeks. Results in vitro suggest that increasing concentrations of lipidic peroxides induce proportional increases of peroxidase activities of myoglobin even at rest conditions, which may culminate in increases of oxidative stress. In humans, although observed increases in iron concentrations after the tests at 80% of a maximal repetition, they were less expressive during weeks 3, 12 and 13, respectively (NP= 92,32%, 87,10% e 71,88%; PL =65,01%, 38,31% e 23,86%; PNL= 86,35%, 79,21% e 76%). The iron-binding capacity of PL subjects was significantly increased in the post test of week 12. The concentrations of TNF-α showed significant increases in post tests for NP (week 3) We can suggest that the ST protocols applied here promoted iron homeostasis rebalances with proportional pro-inflammatory cytokine responses at model NP upon strength test performed along the study.
id CUB_ec12914b94221de7bd6c3447d674b8ab
oai_identifier_str oai:repositorio.cruzeirodosul.edu.br:123456789/319
network_acronym_str CUB
network_name_str Repositório do Centro Universitário Braz Cubas
repository_id_str
spelling Estudo da relação entre homeostase de ferro, estresse oxidativo e inflamação: do modelo molecular ao treinamento de força periodizado e não periodizadoCrosslinks between iron homeostasis, oxidative stress, and inflammation: from a molecular model to the periodized and non-periodized strength trainingHomeostase de ferroEstresse oxidativoCitocinasCNPQ::CIENCIAS DA SAUDEIron is the most abundant essential metal in living organisms and it has a fundamental physiological and metabolic roles in animals and humans. On the other hand, iron might be harmful when its homeostasis is disturbed, as iron ions are main catalysts for the formation of Reactive Oxygen and Nitrogen Species (RONS). The aim of this study was to investigate the relationship between iron homeostasis, physiological markers, and inflammatory cytokines in strength training subjects (ST). The study also addressed molecular in vitro aspects, by simulating resting or exhaustion conditions in plasma (or interstitial) after ST practice, focusing on the catalysis of heme proteins, hemoglobin and myoglobin, in the oxidative insult. Twenty-six male subjects, between 20 to 45 years-old, were divided in 3 training groups: linear periodized training (PL), non-linear periodization (PNL) and non-periodized (NP), for 10 consecutive weeks. Results in vitro suggest that increasing concentrations of lipidic peroxides induce proportional increases of peroxidase activities of myoglobin even at rest conditions, which may culminate in increases of oxidative stress. In humans, although observed increases in iron concentrations after the tests at 80% of a maximal repetition, they were less expressive during weeks 3, 12 and 13, respectively (NP= 92,32%, 87,10% e 71,88%; PL =65,01%, 38,31% e 23,86%; PNL= 86,35%, 79,21% e 76%). The iron-binding capacity of PL subjects was significantly increased in the post test of week 12. The concentrations of TNF-α showed significant increases in post tests for NP (week 3) We can suggest that the ST protocols applied here promoted iron homeostasis rebalances with proportional pro-inflammatory cytokine responses at model NP upon strength test performed along the study.O ferro é o metal essencial mais abundante nos organismos vivos e possui papel fundamental na fisiologia e metabolismo de animais e humanos. Por outro lado, o ferro pode representar um risco quando a homeostase for rompida, frente a sua atuação como catalisador da formação de espécies reativas de oxigênio/nitrogênio (ERO/ERN). O objetivo do estudo foi investigar a relação entre a homeostase de ferro, marcadores fisiológicos e os marcadores inflamatórios decorrentes da prática do treinamento de força (TF). O estudo abordou também aspectos moleculares, ao mimetizar in vitro a condição plasmática (ou intersticial) de repouso e exaustão de humanos após o TF e avaliar a participação de heme-proteínas, hemoglobina e mioglobina, no estresse oxidativo. Vinte e seis homens com idade entre 20 a 45 anos foram divididos em 3 grupos de TF: treinamento periodizado linear (PL), treinamento periodizado não linear (PNL) e treinamento não periodizado (NP), durante 10 semanas consecutivas. Os resultados in vitro sugerem que concentrações crescentes de peróxidos lipídicos induzem aumento proporcional das atividades peroxidásicas de mioglobina mesmo em condições de repouso, o que pode culminar em aumentos no estresse oxidativo. Em humanos, apesar de observarmos aumento nas concentrações de Fe após os testes a 80% de uma repetição máxima, estes foram menos expressivos no decorrer das semanas 3, 12 e 13, respectivamente (NP= 92,32%, 87,10% e 71,88%; PL =65,01%, 38,31% e 23,86%; PNL= 86,35%, 79,21% e 76%). A capacidade ligadora de ferro de PL foi significativamente maior no pós teste da semana 12. As concentrações de TNF-α apresentaram aumento significativo no pós teste em NP (semana 3). Podemos sugerir que os protocolos de TF utilizados neste estudo promoveram reequilíbrios na homeostase de ferro com proporcionais indicativos nas respostas de citocinas pró-inflamatórias no modelo NP frente aos testes de força realizados durante o estudo.Universidade Cruzeiro do SulBrasilCampus LiberdadeDoutorado Interdisciplinar em Ciências da SaúdeCruzeiro do SulBarros, Marcelo Paes de11206444886http://lattes.cnpq.br/2058347369890530Barros, Marcelo Paes de11206444886http://lattes.cnpq.br/2058347369890530Gorjão, Renatahttp://lattes.cnpq.br/6211339830408691Boaventura, Maria Fernanda Curyhttp://lattes.cnpq.br/3746378504513606Silva, Marcelo Guimarãeshttp://lattes.cnpq.br/4567502558957747Abad, César Cavinato Calhttp://lattes.cnpq.br/7774202156405785Sampaio, Ricardo Camões2020-02-06T01:01:30Z20202020-02-06T01:01:30Z2019-04-05info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfSAMPAIO, R. C. Estudo da relação entre homeostase de ferro, estresse oxidativo e inflamação em duas hierarquias: do modelo molecular ao treinamento de força periodizado e não periodizado. 178 f. Tese (Doutorado Interdisciplinar em Ciências da Saúde) – Universidade Cruzeiro do Sul, São Paulo, 2019.http://repositorio.cruzeirodosul.edu.br/handle/123456789/319porAAGAARD, P. Training-induced changes in neural function. Exercise and Sport Science Reviews, v. 31, n. 2, p. 61-67, 2003. AGUIAR, A. et al. High-intensity physical exercise disrupts implicit memory in mice: involvement of the striatal glutathione antioxidant system and intracellular signaling. Neuroscience, v. 171, n. 4, p. 1216-1227, 2010. AHTIAINEN, J.; PAKARINEN, A.; ALEN, M.; KRAEMER, W.; HÄKKINEN, K. Short vs. long rest period between the sets in hypertrophic resistance training: influence on muscle strength, size, and hormonal adaptations in trained men. The Journal of Strength & Conditioning Research, v. 19, n. 1, p. 572-82, 2005. ALLAIN, C.; POON, L.; CHAN, C.; RICHMOND, W.; FU, P. Enzimatic determination of total serum cholesterol. Clinical Chemistry, v. 20, n. 4, p. 470-475, 1974. AL-QENAEI, A. et al. Role of intracellular labile iron, ferritin, and antioxidant defense in resistance of chonically adapted Jurkat T cells to hydrogen peroxide. Free Radical Biology and Medicine, v. 68, n. 1, p. 87-100, 2014. AMERICAN COLLEGE OF SPORTS MEDICINE. Manual de Pesquisa das Diretrizes do ACSM para os Testes de Esforço e sua Prescrição. 4. ed., Guanabara Koogan, 2003. AMERICAN COLLEGE OF SPORTS MEDICINE. Progression Models in Resistance Training for Healthy Adults. Medicine & Science in Sports & Exercise, v. 41, n. 3, p. 687-708, 2009. AMERICAN COLLEGE OF SPORTS MEDICINE. Progression models in resistance training for healthy adults. Medicine & Science in Sports & Exercise, v. 34, n. 1, p. 364-380, 2002. AMERICAN COLLEGE OF SPORTS MEDICINE. Recursos do ACSM para o Personal Trainer. Rio de Janeiro: Guanabara Koogan, 2011. ANDRADE, M.; de LIRA, C. Fisiologia do Exercício. In: GRASSI, E.; SOARES, V.; de LIRA, C.; SILVA, M. Avaliação da composição corporal. 1. ed. Barueri: Manole, 2016. p. 411-463. ______ Fisiologia do Exercício. In: ROCHA, A. Princípios científicos do treinamento físico. 1. ed. Barueri: Manole, 2016. p. 467-484. ______ Fisiologia do Exercício. In: VAISBERG, M.; dos SANTOS, J.; BACHI, A. Exercício físico e sistema imune: uma relação relevante. 1. ed. Barueri: Manole, 2016. p. 937-962. ANTUNES-NETTO, J.; SILVA, L.; MACEDO, D. Biomarcadores de Estresse Oxidativo: Novas Possibilidades de Monitoramento em Treinamento Físico. Revista Brasileira de Ciências e Movimento, v. 13, n. 2, p. 7-15, 2005. AROSIO, P.; LEVI, S. Cytosolic and mitochondrial ferritins in the regulation of cellular iron homeostasis and oxidative damage. Biochimica et Biophysica Acta, v. 1800, n. 8, p. 783-792, 2010. ASTRAND, P.; RADAAL. Tratado de fisiologia do exercício. Rio de Janeiro: Guanabara, 1987. AUGUSTO, O. Radicais livres: bons, maus e naturais. São Paulo: oficina de textos, 2006. AZIZBEIGI, K.; STANNARD, S.; ATASHAK, S.; HAGHIGHI, M. Antioxidant enzymes and oxidative stress adaptation to exercise training: Comparison of endurance, resistance, and concurrent training in untrained Males. Journal of Exercise Science & Fitness, v. 12, n. 1, p. 1-6, 2014. BAECHLE, T.; EARLE, R. Fundamentos do Treinamento de Força e do Condicionamento. 3. ed. Barueri: Manole, 2010. BAER, J.; AYRES, S. Estrogen levels and lipid peroxidation following exercise. Preventive Cardiology, v. 4, n. 1, p. 85-87, 2001. BALLOR, D.; BECQUE, M.; KATCH, V. Metabolic responses during hydraulic resistance exercise. Medicine and Science in Sports and Exercise, v. 19, n. 1, p. 363-367, 1987. BANERJEE, A. et al. Oxidant, antioxidant and physical exercise. Molecular and cellular biochemistry, v. 253, n. 1-2, p. 307-312, 2003. BARREIROS, A.; DAVID, J.; DAVID, J. Estresse oxidativo: relação entre geração de espécies reativas e defesa do organismo. Química Nova, v. 29, n. 1, p. 113-123, 2006. BARROS, M. et al. Effects of acute creatine supplementation on iron homeostasis and uric acid-based antioxidant capacity of plasma after wingate test. Journal of the International Society of Sports Nutrition, v. 9, n. 25, p. 1-10, 2012. BARROS, M.; SILVEIRA, L.; CURI, R.; TORRES, M.; OTTIN, R. Phytochemicals, herbs and antioxidants currently used as supplements for endurance and resistance exercise: facts, foes, and misconceptions. Current Topics in Phytochemistry, v. 9, n. 1, p. 67-72, 2008. BAYNES, J.; DOMINICZAC, M. Bioquímica Médica. 4. ed. Rio de JANEIRO: Elsevier, 2015. p. 37-62. BEARD, J.; TOBIN, B. Iron status and exercise. The American journal of clinical nutrition, v. 72, n. 2, p. 594-597, 2000. BENZIE, I.; STRAIN, J. The ferric reducing ability of plasma (FRAP) as a measure of „„Antioxidant Power‟‟: The FRAP assay. Analytical Biochemistry, v. 239, n. 1, p. 70-76, 1996. BERNECKER, C.; SCHERR, J.; SCHINNERS, S.; BRAUN, S.; SCHERBAUM, W.; HALLE, M. Evidence for an exercise induced increase of TNF-α and IL-6 in marathon runners. Scandinavian Journal of Medicine & Science in Sports, v. 23, n. 2, p. 207-214, 2013. BIESEK, S.; ALVES, L.; GUERRA, I. Estratégias de Nutrição e Suplementação no Esporte. In: LESER, S.; ALVES, L. Os lipídios no exercício. 3. ed. Barueri: Manole, 2015. p. 37-62. BILSKA-WILKOSZ, A.; ICIEK, M.; GÓRNY, M.; PACHEL-KOWALCZYK, D. The role of hemoproteins: hemoglobin, myoglobin and neuroglobin in endogenous thiosulfate production processes. International Journal of Molecular Sciences, v. 18, n. 6, p.1315-1324, 2017. BOMPA, T.; CORNACCHIA, L. Treinamento de Força Consciente. São Paulo: Phorte, 2000. BORG, G. Psychophysical bases of perceived exertion during physical exercise. Medicine & Science in Sports & Exercise, v. 14, n. 5, p. 377-381, 1982. BOVERIS, A. Biochemistry of free radicals: from electrons to tissues. Medicina, v. 58, n. 1, p. 350-356, 1998. BRANCACCIO, P.; LIPPI, G.; NICOLA, M. Biochemical markers of muscular damage. Clinical Chemistry and Laboratory Medicine. v. 48, n. 6, p. 757-767, 2010. BRAND, M. The sites and topology of mitochondrial superoxide production. Experimental Gerontology, v. 45, n. 1, p. 466-472, 2010. BREDT, D. Endogenous nitric oxide synthesis: biological functions and pathophysiology. Free Radical Research, v. 31, n. 6, p. 577-596, 1999. BRENNER, I.; NATALE, V.; VASILOU, P.; MOLDOVEANU, A. SHEK, P.; SHEPHARD, R. Impact of three different types of exercise on components of the inflammatory response. European Journal of Applied Physiology and Occupational Physiology, v. 80, n. 5, p. 452-460, 1999. BREWER, G. Iron and copper toxicity in diseases of aging, particularly atherosclerosis and Alzeimer`s disease. Experimental Biology and Medicine, v. 88, n. 1, p. 7-15, 2007. ______; EATON, J. Erythrocyte Metabolism: Interaction with Oxygen Transport: Science, v. 171, n. 1, p. 1205-2011, 1971. BRICKSON, S.; HOLLANDER, J.; CORR, D.; JI, L.; BEST, T. Oxidant production and immune response after stretch injury in skeletal muscle. Medicine & Science in Sports & Exercise, v. 33, n. 1, p. 2010-2015, 2001. BRILL, P.; MACERA, C.; DAVIS, D.; BLAIR, S. Muscular strength and physical function. Medicine & Science in Sports & Exercise, v. 32, n. 1, p. 412-416, 2000. BROWN, L. Treinamento de Força. Barueri: Manole, 2008. BROWN, M. et al. Nitric oxide biomarkers increase during exercise-induced vasodilation in the forearm. International Journal of Sports Medicine, v. 21, n. 1, p. 83-89, 2000. BRUNORI, M. Nitric oxide, cytochrome-c oxidase and myoglobin. Trends in Biochemical Sciences, v. 26, n. 1, p. 21-23, 2001. BRUUNSGAARD, H.; GALBO, H.; HALKJAER-KRISTENSEN, J.; JOHANSEN, T.; MACLEAN, D.; PEDERSEN, B. Exercise-induced increase in serum interleukin 6 in humans is related to muscle damage. The Journal of Physiology, v. 499, n. 1, p. 833-841, 1997. BUCOLO, G.; DAVID, H. Quantitative-determination of serum triglycerides by use of enzymes. Clinical Chemistry, v. 19, n. 5, p. 476-482, 1973. BUSHMAN, B. Manual Completo de Condicionamento Físico e Saúde do ACSM. São Paulo: Phorte, 2016. CAMASCHELLA, C. Iron and erythropoiesis: a dual relationship. International journal of hematology, v. 93, n. 1, p- 21-26, 2011. ______. Iron- Deficience Anemia. The New England Journal of Medicine, v. 372, n. 19, p. 1832-1843, 2015. CARDOSO, A.; BAGATINI, M.; ROTH, M.; MARTINS, C.; REZER, J.; MELLO, F.; LOPES, F.; MORSCH, V.; SCHETINGER, M. Acute effects of resistance exercise and intermittent intense aerobic exercise on blood cell count and oxidative stress in trained middle-aged women. Brazilian Journal of Medical and Biological Research, v. 45, n. 1, p. 1172-1182, 2012. CARLSON, L.; JONKER, B.; WAYNE, L.; WESTCOTT, J, JAMES, P. Neither repetition duration nor number of muscle actions affect strength increases, body composition, muscle size, or fasted blood glucose in trained males and females. Applied Physiology, Nutrition, and Metabolism, 2018. doi: https://doi.org/10.1139/apnm-2018-0376. CASSINA, A. et al. Citocrome c Nitration by Peroxynitrite. The Journal of Biological Chemistry, v. 275, n. 28, p. 21409-21415, 2000. CASTELLANI, R. et al. Iron: the redoxactive center of oxidative stress in Alzheimer disease. Neurochemical Research, v. 32, n. 1, p. 1640-1645, 2007. CHACKO, S. et al. Relations of dietary magnesium intake to biomarkers of inflammation and endothelial dysfunction in an ethnically diverse cohort of postmenopausal women. Diabetes Care, v. 33, n. 2, p. 304-310, 2010. CHANCE, B.; SIES, H.; BOVERIS, A. Hydroperoxide metabolism in mammalian organs. Physiological Reviews, v. 59, n. 3, p. 527-605, 1979. CHAZAUD, B. Inflammation during skeletal muscle regeneration and tissue remodeling: application to exercise-induced muscle damage management. Immunology & Cell Biology, v. 94, n. 2, p. 140-145, 2015. CHILDS, A.; JACOBS, C.; KAMINSKI, T.; HALLIWEL, B.; LEEUWENBURGH, C. Supplementation with vitamin C and N-acetyl-cisteine increases oxidative stress in humans after an acute muscle injury induced by eccentric exercise. Free Radical Biology and Medicine, v. 31, n. 6, p. 745-753, 2001. CHIN, D.; MAR, G.; BALCH, A. Mechanism of autoxidation of iron (II) porphyrins. Detection of a peroxobridged iron (III) porphyrin dimer and the mechanism of its thermal decomposition to the oxo-bridged iron (III) porphyrin dimer. Journal of the American Chemical Society, v. 102, n. 13, p. 4344-4350, 1980. COBURN, J. et al. Neuromuscular responses to three days of velocity-specific isokinetic training. The Journal of Strength & Conditioning Research, v. 20, n. 1, p. 892-898, 2006. COELHO, B. et al. Physical exercise prevents the exacerbation of oxidative stress parameters in chronic kidney disease. Journal of Renal Nutrition, v. 20, n. 3, p. 169-175, 2010. COFFEY, V., et al. Early signaling responses to divergent exercise stimuli in skeletal muscle from well-trained humans. The FASEB Journal, v. 20, n. 1, p. 190-192, 2006. CONRAADS, V.; BECKERS, P.; BOSMANS, J.; de CLERCK, L.; STEVENS, W.; VRINTS, C.; BRUTSAERT, D. Combined endurance/resistance training reduces plasma TNF-α receptor levels in patients with chonic heart failure and coronary artery disease. European Heart Journal, v. 23, n. 1, p. 1854-1860, 2002. CONCEIÇÃO, M.; LIBARDI, C.; NOGUEIRA, F.; BONGANHA, V.; GÁSPARI, A.; CHACON-MIKAHIL, M.; CAVAGLIERI, C.; MADRUGA, V. Effects of eccentric exercise on systemic concentrations of pro- and anti-inflammatory cytokines and prostaglandin (E2): comparison between young and postmenopausal women. European Journal of Applied Physiology, v. 112, n. 1, p. 3205–3213, 2012. COOPER, C. et al. Exercise, free radicals and oxidative stress. Biochemical Society Transactions, v. 30, n. 2, p. 280-285, 2002. CÓRDOVA-MARTINEZ, A. et al. Changes in circulating cytokines and markers of muscle damage in elite cyclists during a multi-stage competition. Clinical Physiology and Functional Imaging, v. 33, n. 1, p. 351-358, 2015. COZZOLINO, S.; COMINETTI, C. Bases Bioquímicas e Fisiológicas da Nutrição nas diferentes fases da vida, na saúde e na doença. In: HENRIQUES, G. Ferro. 1. ed. Barueri: Manole, 2013. p. 228-251. DAMAS, F.; LIBARDI, C.; UGRINOWITSCH, C. High-dose, single fraction image guided intensity-modulated radiotherapy for metastic spinal lesions. European Journal of Applied Physiology, 2017. doi: https://doi.org/10.1007/s00421-017-3792-9. DAVID, J. et. al. Métodos para determinação de atividade antioxidante in vitro em substratos orgânicos. Química Nova, v. 33, n. 10, p. 2202-2210, 2010. DAVIES, K. et al. Free radicals and tissue damage produced by exercise. Biochemical and Biophysical Research Communications, v. 107, n. 4, p. 1198-1205, 1982. de SOUSA, C. et al. The antioxidant Effect of Exercise: A systematic review and Meta-analysis. Sports Medicine, v. 47, n. 2, p. 277-293, 2017. DELLA MANNA, A.; MONTPETIT, S. A novel approach to obtaining reliable PCR results from luminol treated bloodstains. Journal of Forensic Science, v. 45, n. 4, p. 886-890, 2000. DELLAVALLE, D.; HAAS, J. Iron status is associated with endurance performance and training in female rowers. Medicine & Science in Sports & Exercise, v. 44, n. 8, p. 1552-1559, 2012. DEMINICE, R. et al. Blood and salivary oxidative stress biomarkers following an acute session of resistance exercise in humans. Physiology & Biochemistry, v. 31, n. 9, p. 599-603, 2010. DESCHENES, M.; KRAEMER, W. Performance and physiologic adaptations to resistance training. American Journal of Physical Medicine & Rehabilitation, v. 81, n. 1, p. 3-16, 2002. DÉTIVAUD, L. et al. Hepcidin levels in humans are correlated with hepatic iron stores, hemoglobin levels, and hepatic function. Blood, v. 106, n. 2, p. 746-748, 2005. DOULIAS, P.; KOTOGLOU, P.; TENOPOULOU, M.; KERAMISANOU, D.; TZAVARAS, T.; BRUNK, U.; GALARIS, D.; ANGELIDIS, C. Involvement of heat shock protein-70 in the mechanism of hydrogen peroxide-induced DNA damage: the role of lysosomes and iron. Free Radical Biology and Medicine, v. 42, n. 1, p. 567-577, 2007. DRAEGER et al. Controversies of antioxidante vitamins supplmentation in exercise: ergogenic or ergolytic effects in humans? Journal of the International Society of Sports Nutrition, v. 11, n. 1, p. 4, 2014. DRÖGE, W. Free radicals in the physiological control of cell function. Physiological Reviews, v. 82, n. 1, p. 47-95, 2002. EICHNER, E. Runner's macrocytosis: a clue to footstrike hemolysis. Runner's anemia as a benefit versus runner's hemolysis as a detriment. The American Journal of Medicine, v. 78, n. 2, p. 321-325, 1985. EL-SAYED, M.; ALI, N.; EL-SAYED ALI, Z. Haemorheology in exercise and training. Sports Medicine, v. 35, n. 8, p. 649-670, 2005. EVSTATIEV, R.; GASCHE, C. Iron sensing and signaling. Gut, v. 61, n. 6, p. 933-952, 2012. FEBBRAIO, M.; STEENSBERG, A.; FISCHER, C.; KELLER, C.; HISCOCK, N.; PEDERSEN, B. IL-6 activates HSP72 gene expression in human skeletal muscle. Biochemical and Biophysical Research Communications, v. 296, n. 1, p. 1264-1266, 2002. FEHRENBACH, E.; NORTHOFF, H. Free radicals, exercise, apoptosis, and heat shock proteins. Exercise Immunology Review, v. 7, n. 1, p. 66-89, 2001. FERRUCCI, L. Serum IL-6 level and the development of disability in older persons. Journal of the American Geriatrics Society, v. 47, n. 6, p. 639-646, 1999. FINAUD, J.; LAC, G.; FILAIRE, E. Oxidative stress. Relationship with exercise and training. Sports Medicine, v. 36, n. 4, p. 327-58, 2006. FISCHER, C. et al. Plasma levels of interleukin-6 and C-reactive protein are associated with physical inactivity independent of obesity. Scandinavian Journal of Medicine & Science in Sports, v. 17, n. 5, p. 580-587, 2007. FISHER-WELLMAN, K.; BLOOMER, R. Acute exercise and oxidative stress: a 30 year history. Dynamic Medicine, v. 8, n. 1, p. 1-25, 2009. FLECK, S. Non-linear periodization for general fitness & athletes. Journal of Human Kinetics, v. 29, n. 1, p. 41-45, 2011. ______. Periodized strength training: A critical review. Journal of Strength and Condicioning Research, v. 13, n. 1, p. 82-89, 1999. ______; KRAEMER, W. Fundamentos do treinamento de força muscular. 4. ed. Porto Alegre: Artmed: 2017. FLEMING, R.; BACON, B. Orquestration of iron homeostasis. The New England Journal of Medicine, v. 352, n. 17, p.1741-1744, 2005. FLÖGEL, U. et al. Myoglobin: A scavenger of bioactive NO. Proceedings of the National Academy of Sciences of the United States of America, v. 98, n. 2, p. 735-740, 2001. FRAGALA, M.; BI, C.; CHAUMP, M.; KAUFMAN, H.; KROLL, M. Associations of aerobic and strength exercise with clinical laboratory test values. Plos One, 2017. doi: https://doi.org/10.1371/journal.pone.0180840. FRANCISCO, G.; HERNÁNDEZ, C.; SIMÓ, R. Serum markers of vascular inflammation in dyslipidemia. Clinica Chimica Acta, v. 369, n. 1, p. 1-16, 2006. FRAZER, D.; ANDERSON, G. The regulation of iron transport. BioFactors, v. 40, n. 2, p. 206-214, 2014. FREI, B.; STOCKER, R.; ENGLAND, L.; AMES, B. Ascorbate: the most effective antioxidant in human blood plasma. Advances in Experimental Medicine and Biology, v. 264, n. 1, p. 155-163, 1990. FUJITA, S.; DREYER, H.; DRUMMOND, M.; GLYNN, E.; CADENAS, J.; YOSHIZAWA, F.; VOLPI, E.; RASMUSSEN, B. Nutrient signaling in the regulation of human muscle protein synthesis. The Journal of Physiology, v. 582, n. 2, p. 813-823, 2007. GALARIS, D.; BARBOUTI, A.; KORANTZOPOULOS, P. Oxidative stress in hepatic ischemia-reperfusion injury: the role of antioxidants and iron chelating compounds. Current Pharmaceutical Design, v. 12, n. 1, p. 2875-2890, 2006. ______; KORANTZOPOULOS, P. On the molecular mechanism of metmyoglobin-catalyzed reduction of hydrogen peroxide by ascorbate. Free Radical Biology and Medicine, v. 22, n. 1, p. 657-667, 1997. ______; MANTZARIS, M.; AMORGIANIOTIS, C. Oxidative stress and aging: the potential role of iron. Hormones, v. 7, n. 2, p. 114-122, 2008a. ______.; PANTOPOULOS, K. Oxidative stress and iron homeostasis: mechanistic and health aspects. Critical Reviews in Clinical Laboratory Sciences, v. 45, n. 1, p. 1-23, 2008b. GANDRA, P.; MACEDO, D.; ALVES, A. Fontes de espécies reativas de oxigênio na musculatura esquelética durante o exercício. Revista Brasileira de Ensino de Bioquímica e Biologia Molecular, v. 6, n. 2, p. 1-11, 2006. GANZ, T. Molecular control of iron transport. Journal of the American Society of Nephology, v. 18, n. 1, p. 394-400, 2007. ______; NEMETH, E. Hepcidin and disorders of iron metabolism. Annual Review of Medicine, v. 62, n. 1, p. 347-60, 2011. ______.; NEMETH, E. Hepcidin and iron homeostasis. Biochimica et Biophysica Acta, v. 1823, n. 9, p. 1434-1443, 2012. GAROFANO, L.; PIZZAMIGLIO, M.; MARINO, A.; BRIGHENTI, A.; ROMANI, F. A comparative study of the sensitivity and specificity of luminol and fluorescein on diluted and aged bloodstains and subsequent STRs typing. International Congress Series, v. 1288, n. 1, p. 657-659, 2006. GATÉ, L.; PAUL, J.; BA, G.; TEW, K.; TAPIERO, H. Oxidative stress induced in pathologies: the role of antioxidants. Biomedicine & Pharmacotherapy, v. 53, n. 4, p. 169-180, 1999. GAVRIELI, R.; ASHLAGI-AMIRI, T.; ELIAKIM, A.; NEMET, D.; ZIGEL, L.; BERGER-ACHITUV, S.; FALK, B.; WOLACH, B. The Effect of Aerobic Exercise on Neutrophil Functions. Medicine & Science in Sports & Exercise, v. 40, n. 1, p. 1623-1628, 2008. GIULIVI, C.; DAVIES, K. Mechanism of the formation and proteolytic release of H2O2-induced dityrosine and tyrosine oxidation products in hemoglobin and red blood cells. The Journal of Biological Chemistry, v. 276, n. 1, p. 24129-24136, 2001. GLEESON, M. Immune function in sport and exercise. Journal of Applied Physiology, v. 103, n. 2, p. 693-699, 2007. GLEESON, N. et al. Effects of prior concentric training on eccentric exercise induced muscle damage. British Journal of Sports Medicine, v. 37, n. 2, p. 119-125, 2003. GOLDFARB, A.; GARTEN, R.; CHO, C.; CHEE, P.; CHAMBERS, L. Effects of a fruit/berry/vegetable supplement on muscle function and oxidative stress. Medicine & Science in Sports & Exercise, v. 43, n. 3, p. 501-508, 2011. GOLDIFIELD, G., et al. Effects of aerobic training, resistance training, or both on brain-derived neurotrophic factor in adolecents with obesity: The hearty randomized controlled trial. Physiology & Behavior, v. 191, n. 1, p. 138-145, 2018. GOMES, E.; NUNES-SILVA, A.; OLIVEIRA, M. Oxidants, antioxidants, and the beneficial roles of exercise-induced production of reactive species. Oxidative Medicine and Cellular Longevity, 2012. doi: https://doi: 10.1155/2012/756132. GONYEA, W. Role of exercise in inducing increases in skeletal muscle fiber number. Journal of Applied Physiology, v. 48, n. 3, p. 421-426, 1980. GOODWIN, J. et al. Direct measurements of serum iron and binding capacity. Clinical Chemistry, v. 12, n. 2, p. 47-57, 1966. GREGORY, M.; ALBERT, K.; JACK, H.; RAKESH, P. Is methemoglobin an inert bystander, biomarker or a mediator of oxidative stress- The example of anemia? Redox Biology, v. 1, n. 1, p. 65-69, 2013. GRGIC, J.; MIKULIC, P.; PODNAR, H.; PEDISIC, Z. Effects of linear and daily undulating periodized resistance training programs on measures of muscle hypertrophy: a systematic review and meta-analysis. Peer J, 2017. doi: https://doi 10.7717/peerj.3695. GRØNTVED, A.; RIMM, E.; WILLETT, W.; ANDERSEN, L.; HU, F. A prospective study of weight training and risk of type 2 diabetes mellitus in men. Archives of Internal Medicine, v. 172, n. 17, p. 1306-1312, 2012. GROTTO, H. Fisiologia e metabolismo do ferro. Revista Brasileira de Hematologia e Homoterapia, v. 32, n. 2, p. 8-17, 2010. ______. Metabolismo do ferro: uma revisão sobre os principais mecanismos envolvidos em sua homeostase. Revista Brasileira de Hematologia e Hemoterapia, v. 30, n. 5, p. 390-397, 2008. GUTTERIDGE, J. Iron promoters of the Fenton reaction and lipid peroxidation can be released from haemoglobin by peroxides. FEBS Letters, v. 201, n. 2, p. 291-295, 1986. HÄKKINEN, K.; KOMI, P.; ALÉN, M.; KAUHANEN, H. EMG, muscle fiber and force production characteristics during a 1 year training period in elite weightlifters. European Journal of Applied Physiology, v. 56, n. 1, p. 419-427, 1987. HALLIWELL, B. Free radicals, antioxidants and human disease: curiosity, cause or consequence? Lancet, v. 344, n. 1, p. 721-724, 1994. ______; GUTTERIDGE, J. Free radicals in biology and medicine. 4. ed. Oxford University Press, 2007. ______; ______. Role of free radicals and catalytic metal ions in human disease: an overview. Methods in enzymology, v. 186, n. 1, p. 1-85, 1990. ______; ______; CROSS, J. Free radicals, antioxidants, and human disease: where are we now? The Journal of Laboratory and Clinical Medicine, v. 119, n. 6, p. 598-620, 1992. HAMMOUDA, O. et al. Morning-to-evening difference of biomarkers of muscle injury and antioxidant status in young trained soccer players. Biological Rhythm Research, v. 43, n. 4, p. 431-438, 2012. HATANAKA, E.; CURY, R. Ácidos graxos e cicatrização: uma revisão. Revista Brasileira de Ciências Farmacêuticas, v. 88, n. 2, p. 53-58, 2007. HAWKE, T. Muscle Stem Cells and Exercise Training. Exercise and Sport Sciences Reviews, v. 33, n. 2, p. 63-68, 2005. HEENEY, M.; ANDREWS, N. Iron homeostasis and inherited iron overload disorders: an overview. Hematology/Oncology Clinics of North America, v. 18, n. 1, p. 1379-1403, 2004. HENTZE, M.; MUCKENTHALER, M.; GALY, B.; CAMASCHELLA, C. Two to tango: Regulation of mammalian iron metabolism. Cell, v. 142, n. 1, p. 24-38, 2010. HERSLETH, R.; RYDE, U.; RYDBERG, P.; GÖRBITZ, C.; ANDERSSON, K. Structures of the High-Valent Metal-Ion Haem-Oxygen Intermediates in Peroxidases, Oxygenases and Catalases. Journal of Inorganic Biochemistry, v. 100, n. 1, p. 460-476, 2006. HUDSON, M.; HOSICK, P.; MCCAULLEY, G.; SCHRIEBER, L.; WRIEDEN, J.; MCANULTY, S.; TRIPLETT, N.; MCBRIDE, J.; QUINDRY, J. The effect of resistance exercise on humoral markers of oxidative stress. Medicine & Science in Sports & Exercise. v. 40, n. 3, p. 542-548, 2008. HULTQUIST, D.; SANNES, L.; JUCKETT, D. Catalysis of Methemoglobin Reduction. Current Topics in Cellular Regulation, v. 24, n. 1, p. 287-299, 1984. HUNDING, A.; JORDAL, R.; PAULEV, P. Runner‟s anemia and iron deficiency. Acta Medica Scandinavica, v. 209, n. 1, p. 315-318, 1981. HUNTER, G. Changes in body composition, body build and performance associated with different weight training frequencies in males and females. Strength and Conditioning Journal, v. 4, n. 1, p. 26-8, 1985. HUSAIN, S.; CILLARD, J.; CILLARD, P. Hydroxil radical scavenging activity of flavonoids. Phytochemistry, v. 26, n. 9, p. 2489-2491, 1987. IHALAINEN, J. et al. Acute leukocyte, cytokine and adipocytokine responses to maximal and hypertrophic resistance exercise bouts. European Journal of Applied Physiology, v. 114, n. 12, p. 2607-2616, 2014. JACKSON, A.; POLLOCK, M. Generalized equations for predicting body density of men. British Journal of Nutrition, v. 40, n. 1, p. 497-504, 1978. JACKSON, M. Control of reactive oxygen species production in contracting skeletal muscle. Antioxidants & Redox Signaling, v.15, n. 9, p. 2477-2486, 2011. ______. Reactive oxygen species and redox-regulation of skeletal muscle adaptations to exercise. Philosophical Transactions of the Royal Society B: Biological Sciences, v. 360, n. 1464, p. 2285-2291, 2005. JENKINS, R.; GOLDFARB, A. Introduction: oxidant stress, aging and exercise. Medicine & Science in Sports & Exercise, v. 25, n. 2, p. 210-212, 1993. JUDGE, A.; DODD, S. Xanthine oxidase and activated neutrophils cause oxidative damage to skeletal muscle after contractile claudication. American Journal of Physiology-Heart and Circulatory Physiology, v. 286, n. 1, p, 252-256, 2004. KALAPOTHARAKOS, V. et al. Effects of a heavy and moderate resistance training on functional performance in older adults. The Journal of Strength & Conditioning Research, v. 19, n. 3, p. 652-657, 2005. KAPLAN, L.; PESCE, A. Clinical Chemistry: Principles, Techniques, and Correlations, Philadelphia, 1996. KAPRALOV, A.; VLASOVA, I.; FENG, W.; MAEDA, A.; WALSON, K.; TYURIN, V.; HUANG, Z.; ANEJA, R.; CARCILLO, J.; BAYIR, H.; KAGAN, V. Peroxidase Activity of hemoglobin-haptoglobin Complexes. Covalent Aggregation and Oxidative Stress in Plasma and Macrophages. The Journal of Biological Chemistry, v. 284, n. 44, p. 30395-30407, 2009. KAYSEN, G.; STEVENSON, F.; DEPNER, T. Determinants of albumin concentration in hemodialysis patients. American Journal of Kidney Diseases, v. 29, n. 5, p. 658-668, 1997. KELL, D. Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Etiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases. BMC Medical Genomics, v. 2, n. 2, p. 1-79, 2009. KHAN, K.; MONDAL, M.; PADHY, L.; MITRA, S. The role of distal histidine in peroxidase activity of myoglobin-Transient-kinetics study of the reaction of H2O2 with wild-type and distal-histidine-mutanted recombinant human myoglobin. European Journal of Biochemistry, v. 257, n. 1, p. 547-555, 1998. KINNULA, V. Focus on antioxidant enzymes and antioxidant strategies in smoking related airway disease. Thorax, v. 60, n. 1, p. 693-700, 2005. KISHIMOTO, T. The biology of interleukin-6. Bood, v. 74, n. 1, p. 1-10, 1989. KOHGO, Y.; IKUTA, K.; OHTAKE, T.; TORIMOTO, Y.; KATO, J. Boby iron metabolism and pathophysiology of iron overload. International Journal of Hematology, v. 232, n. 1, p. 323-335, 2008. KOOLMAN, J.; RÖHM, K. Bioquímica: Texto e atlas. 4. ed. Porto Alegre: Artmed, 2013. KORAK, J.; PAQUETE, M.; BROOKS, J.; FULLER, D.; COONS, J. Effect of rest-pause vs. traditional bench press training on muscle strength, electromyography, and lifting volume in randomized trial protocols. European Journal of Applied Physiology, v. 117, n. 9, p. 1891-1896, 2017. KRABBE, K.; PEDERSEN, M.; BRUUNSGAARD, H. Mini-review. Inflamatory mediators in the elderly. Experimental Gerontology, v. 39, n. 5, p. 687-699, 2004. KRAEMER, W. et al. American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Medicine & Science in Sports & Exercise, v. 34, n. 2, p. 368-380, 2002. ______; RATAMESS, N. Fundamentals of Resistance Training: Progression and Exercise Prescription. Medicine & Science in Sports & Exercise, v. 36, n. 4, p. 674-688, 2004. ______; FLECK, S. Otimizando o treinamento de força: Programas de periodização não linear. Barueri: Manole, 2009. ______; RATAMES, N. Hormonal responses and adaptations to resistance exercise and training. Sports Medicine, v. 3734, n. 1, p. 339-361, 2005. KTAN, F. INOS-mediated nitric oxide production and its regulation. Life Sciences, v. 75, n. 6, p. 639-653, 2004. KUMAR, V. et al. Patologia: bases patológicas das doenças. Rio de Janeiro: Elsevier, 2010. LAWEN, A. Is erythroferrone finally the long sought-after systemic erythroid regulator of iron? World Journal of Biological Chemistry, v. 6, n. 3, p. 78-82, 2015. LEANDRO, C.; CASTRO, R.; NASCIMENTO, E.; PITHON-CURI, T.; CURI, R. Mecanismos adaptativos do sistema imunológico em resposta ao treinamento físico. Revista Brasileira de Medicina do Esporte, v. 13, n. 5, p. 343-348, 2007. LEE, D.; ANDERSEN, J.; KAUR, D. Iron dysregulation and neurodegeneration: the molecular connection. Molecular Interventions, v. 6, n. 1, p. 89-97, 2006. LEEUWENBURGH, C. et al. Oxidized amino acids in the urine of aging rats: potential markers for assessing oxidative stress in vivo. The American Journal of Physiology, v. 276, n. 1-2, p. 128-135, 1999. LEMOS, A. et al. A hepcidina como parâmetro bioquímico na avaliação da anemia por deficiência de ferro. Revista da Associação Médica Brasileira, v. 56, n. 5, p. 596-599, 2010. LEWIS, N.; HOWATSON, G.; MORTON, K.; HILL, J.; PEDLAR, C. Alterations in redox homeostasis in the elite endurance athlete. Sports Medicine, v. 45, n. 1, p. 379-409, 2015. LIEU, P.; HEISKALA, M.; PETERSON, P.; YANG, Y. The roles of iron in health and disease. Molecular Aspects of Medicine, v. 22, n. 1, p. 1-87, 2001. LIVINGSTON, D.; BROWN, W. The chemistry of myoglobin and its reactions. Food Technology, v. 35, n. 5, p. 244-252, 1981. LOPEZ, A.; CACOUB, P.; McDOUGALL, I.; PEYRIN-BIROLET, L. Iron deficiency anaemia. The Lancet, v. 387, n. 10021, p. 907-916, 2016. LOUIS, E.; RAUE, U.; YANG, Y.; JEMIOLO, B.; Trappe, S. Time course of proteolytic, cytokine, and myostatin gene expression after acute exercise in human skeletal muscle. Journal of Applied Physiology, v. 103, n. 5, p. 1744-1751, 2007. MACLEAN, D.; BANGSBO, J.; SALTIN, B. Muscle interstitial glucose and lactate levels during dynamic exercise in humans determined by micodialysis. Journal of Applied Physiology, v. 87, n. 4, p. 1483-1490, 1999. MAIRBÄURL, H. Red blood cells in sports: effects of exercise and training on oxygen supply by red blood cells. Frontiers in Physiology, v. 4, n. 332, 2013. doi: https://doi: 10.3389/fphys.2013.00332. MANSOURI, A.; LURIE, A. Concise review: methemoglobinemia. American Journal of Hematology, v. 42, n. 1, p. 7-12, 1993. MARGONIS, K. et al. Oxidative stress biomarkers responses to physical overtraining: Implications for diagnosis. Free Radical Biology and Medicine, v. 43, n. 6, p. 901-910, 2007. MARTINEZ-GARCIA, M. et al. Body iron stores and glucose intolerance in premenopausal women. Diabetes Care, v. 32, n. 1, p. 1525-1530, 2009. MARTINOVIC, J.; DOPSAJ, V.; KOTUR-STEVULJEVIĆ, J.; DOPSAJ, M.; NESIC, G. Oxidative stress status in elite female volleyball athletes with depleted iron stores. British Journal of Sports Medicine, v. 45, n. 1, p. 534-535, 2011. MARUHASHI, Y. et al. ROS scavenging activity and muscle damage prevention in eccentric exercise in rats. The Journal of Physiological Science, v. 57, n. 4, p. 211-216, 2007. MATEO, R.; LAÍNES, M. Anemia do atleta (I): fisiopatologia do ferro. Revista Brasileira de Medicina do Esporte, v. 6, n. 3, p. 108-114, 2000. McARDLE, W.; KATCH, F.; KATCH, V. Fisiologia do Exercício: Energia, Nutrição e Desempenho humano. 7. ed. Rio de Janeiro: Guanabara Koogan, 2011. McBRIDE, J.; KRAEMER, W. Free radicals, exercise, and antioxidants. Journal of Strength and Conditioning Research, v. 13, n. 2, p. 175-183, 1999. ______; KRAEMER, W.; TRIPLETT-McBRIDE, T.; SEBASTIANELI, W. Effect of resistance exercise on free radical production. Medicine & Science in Sports & Exercise, v. 30, n. 1, p. 67-72, 1998. McCORD, J. Iron, free radicals, and oxidative injury. The Journal of Nutrition, v. 134, n. 1, p. 3171-3172, 2004. McCULLY, K.; NATELSON, B. Impaired oxygen delivery to muscle in chonic fatigue syndrome. Clinical Science, v. 97, n. 1, p. 603-608, 1999. MENA, N. et al. Hepcidin inhibits apical iron uptake in intestinal cells. American Journal of Physiology-Gastrointestinal and Liver Physiology, v. 294, n. 1, p. 192-198, 2008. MERKOFER, M.; KISSNER, R.; HIDER, R.; BRUNK, U.; KOPPENOL, W. Fenton chemistry and iron chelation under physiologically relevant conditions: Electrochemistry and kinetics. Chemical Research in Toxicology, v. 19, n. 10, p. 1263-1269, 2006. MERRY, T.; RISTOW, M. Do antioxidant supplements interfere with skeletal muscle adaptation to exercise training? The Journal of Physiology, v. 594, n. 18, p. 5135-5147, 2016. MIETHKE, M. Molecular strategies of microbial iron assimilation: from high affinity complexes to cofactor assembly systems. Metallomics, v. 5, n. 1, p. 15-28, 2013. MIYAZAKI, H. et al. Strenuous endurance training in humans reduces oxidative stress following exhausting exercise. European Journal Applied Physiology, v. 84, n. 1, p. 1-6, 2001. MOHUN, A.; COOK, I. Simple methods for measuring serum levels of the glutamic-oxalacetic and glutamic-piruvic transaminases in routine laboratories. American Journal of Clinical Pathology, v. 10, n. 1, p. 394-399, 1957. MOLDEVEANU, A.; SHEPHARD, R.; SHEK, P. The cytokyne response to physical activity and training. Sports Medicine, v. 31, n. 2, p. 115-144, 2001. MONTEIRO, W.; SIMÃO, R.; FARINATTI, P. Manipulação na ordem dos exercício e sua influência sobre o número de repetições e percepção subjetiva de esforço em mulheres treinadas. Revista Brasileira de Medicina do Esporte, v. 11, n. 2, p. 146-150, 2005. MOORE, K.; HOLT, S.; PATEL, R.; SVISTUNENKO, D.; ZACKERT, W.; GOODIER, D. A causative role for redox cycling of myoglobin and its inhibition by alkalinization in the pathogenesis and treatment of rhabdomyolysis-induced renal failure. The Journal of Biological Chemistry, v. 273, n. 48, p. 31731-31737, 1998. MORGAN, E. et al. Cytometric bead array: a multiplexed assay plataform with applications in various areas of biology. Clinical Immunology, v. 110, n. 1, p. 252-266, 2004. MORITANI, T.; DE VRIES, H. Neural factors versus hypertrophy in the time course of muscle strength gain. American Journal Physiologic Medicine, v. 58, n. 3, p. 115-130, 1979. NAGABABU, E.; RIFKIND, J. Heme degradation during autoxidation of oxyhemoglobin. Biochemical and Biophysical Research Communications, v. 273, n. 1, p. 839-845, 2000. NANTES, I.; RODRIGUES, T.; YOMIZO, C.; ARAÚJO-CHAVES, J.; PESSOTO, F.; KISAKI, M.; MORAES, V. (2012). Antioxidant Action of Mobile Electron Carriers of the Respiratory Chain, Bioenergetics, Kevin Clark, IntechOpen, doi: 10.5772/31384. Available from: https://www.intechopen.com/books/bioenergetics/antioxidant-action-of-mobile-electron-carriers-of-the-respiratory-chain. NEMETH, E. Anti-hepcidin therapy for iron-restricted anemias. Blood, v. 122, n. 17, p. 2929-2931, 2013. ______ et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science, v. 306, n. 5704, p. 2090-2093, 2004. ______; GANZ, T. The role of hepcidin in iron metabolism. Acta Haematologica, v. 122, n. 2-3, p. 78-86, 2009. NEUBAUER, O.; KÖNIG, D.; WAGNER, K. Recovery after an Ironman triathlon: sustained inflammatory responses and muscular stress. European Journal of Applied Physiology, v. 104, n. 3, p. 417-426, 2008. NIEMAN, D. Is infection risck linked to exercise workload? Medicine & Science in Sports & Exercise, v. 32, n. 1, p. 406-411, 2000. ______; PEDERSEN, B. Exercise and immune function: recent developments. Sports Medicine, v. 27, n. 2, p. 73-80, 1999. NIKOLAIDIS, P.; INGEBRIGTSEN, J. Physical and physiological characteristics of elite male handball players from teams with a different ranking. Journal of Human Kinetcs, v. 8, n. 38, p. 115-124, 2013. NISHIMOTO, N. et al. Study of active controlled monotherapy used for rheumatoid arthritis, an IL-6 inhibitor (SAMURAI): evidence of clinical and radiographic benefit from an x ray reader-blinded randomized controlled trial of tocilizumab. Annals of the Rheumatic Diseases, v. 66, n. 9, p. 1162-1167, 2007. NUNES, L. Exames laboratoriais no esporte: guia prático para interpretação dos exames laboratoriais de atletas e praticantes de atividade física. 2. ed. Campinas-SP: eBook Kindle, 2019. ODEH, M. The role of zinc in acquired immunodeficiency syndrome. Journal of Internal Medicine, v. 231, n. 1, p. 463-469, 1992. ORTIZ DE MONTELLANO, P.; CORREIA, M. Suicidal destruction of cytochrome P450 during oxidative drug metabolism. Annual Review of Pharmacology and Toxicology, v. 23, n. 1, p. 481-503, 1983. OGAWA, K.; SANADA, K.; MACHIDA, S.; OKUTSU, M. e SUZUKI, K. Resistance Exercise Training-Induced Muscle Hypertrophy Was Associated with Reduction of Inflammatory Markers in Elderly Women. Mediators of Inflammation, v. 2010. doi: http:// dx.doi.org/10.1155/2010/171023. OSAWA, Y.; KORZEKWA, K. Oxidative modification by low levels of HOOH can transform myoglobin to an oxidase. Proceedings of the National Academy Sciences of the United States of America, v. 88, n. 1, p. 7981-7985, 1991. PARKHOUSE, W.; McKENZIE, D.; HOCHACHKA, P.; OVALLE, W. Buffering capacity of deproteinised human vastus lateralis muscle. Journal of Applied Physiology, v. 58, n. 1, p. 14-17, 1985. PARK, M.; KIM, S.; LEE, Y. Impact of oxidative stress on lung diseases. Respirology, v. 14, n. 1, p. 27-38, 2009. PASCHALIS, V., et al. Uniform and prolonged changes in blood oxidative stress after muscle damaging exercise. In Vivo, v. 21, n. 5, p. 877-883, 2007. PEAKE, J.; DELLA GATTA, P.; SUZUKI, K.; NIEMAN, D. Cytokine expression and secretion by skeletal muscle cells: regulatory mechanisms and exercise effects. Exerc Immunol Rev, v. 21, n. 1, p. 8-25, 2015. ______; SUZUKI, K.; HORDERN, M.; WILSON, G.; NOSAKA, K.; COOMBES, J. Plasma cytokine changes in relation to exercise intensity and muscle damage. European Journal of Applied Physiology, v. 95, n. 1, p. 514-521, 2005. ______; NEUBAUER, O.; DELLA GATTA, P.; NOSAKA, K. Muscle damage and inflammation during recovery from exercise. Journal of Applied Physiology, v. 122, n. 3, p. 559-570, 2017. PEDERSEN, B.; EDWARD, F. Adolph distinguished lecture: muscle as an endocrine organ: IL-6 and other myokines. Journal of Applied Physiology, v. 107, n. 4, p. 1006-1014, 2009. ______ et al. Searching for the exercise factor: is IL-6 a candidate? Journal of Muscle Research and Cell Motility, v. 24, n. 1, p. 113-119, 2003. ______; FEBBRAIO, M. Muscle as an endocrine organ: focus on muscle-derived Interleukin-6. Physiological Reviews, v. 88, n. 4, p.1379-1406, 2008. ______; ______. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nature Reviews Endocrinology, v. 8, n. 8, p. 457-465, 2012. ______; FISCHER, C. Beneficial health effects of exercise - the role of IL6 as a myokine. Trends in Pharmarcological Sciences, v. 28, n. 4, p. 152-156, 2007. PERCY, M.; McFERRAN, N.; LAPPIN, T. Disorders of oxidised haemoglobin. Blood Reviews, v. 19, n. 2, p. 61-68, 2005. PERSEGHIN, G.; LATTUADA, G.; RAGOGNA, F.; ALBERTI, G.; LA TORRE, A.; LUZI, L. Free leptin index and thyroid function in male highly trained athletes. European Journal of Endocrinology, v. 161, n. 6, p. 871-876, 2009. PETERS, T. et al. A new method for the determination of serum iron-binding capacity. Journal of Laboratory and Clinical Medicine, v. 48, n. 2, p. 274-279, 1956. PETERSEN, A.; PEDERSEN, B. The anti-inflammatory effect of exercise. Journal of Applied Physiology, v. 98, n. 1, p. 1154-1162, 2005. PETERSEN, B.; HASTINGS, B.; GOTTSCHALL, J. Low load, high repetition resistance training program increases bone mineral density in untrained adults. The Journal of Sports Medicine and Physical Fitness, v. 57, n. 1-2, p. 70-76, 2017. PETRY, ÉR, ALVARENGA, M.; CRUZAT, V.; TIRAPEGUI, J. Exercício físico e estresse oxidativo: mecanismos e efeitos. Revista Brasileira de Ciência e Movimento, v. 18, n. 4, p. 90-99, 2010. PINCIVERO, D.; LEPHART, S.; KARUNAKARA, R. Effects of rest interval on isokinetic strength and functional performance after short term high intensity training. British Journal of Sports Medicine, v. 31, n. 1, p. 229-234, 1997. PINHO, R. et al. Oxidative stress and inflammatory parameters after an Ironman race. Clinical Journal of Sport Medicine, v. 20, n. 4, p. 306-311, 2010. PITHON-CURI, T. Fisiologia do Exercício. In: HATANAKA, E.; PITHON-CURI, T. Exercício Físico e Resposta Inflamatória. 1. ed. Rio de Janeiro: Guanabara Koogan, 2013. p. 273-282. ______ Fisiologia do Exercício. In: HIRABARA, S.; PITHON-CURI, T.; CURI, R. Vias metabólicas de Produção de ATP. 1. ed. Rio de Janeiro: Guanabara Koogan, 2013. p. 24-34. ______ Fisiologia do Exercício. In: OLIVEIRA, F. Contração Muscular. 1. ed. Rio de Janeiro: Guanabara Koogan, 2013. p. 35-47. ______ Fisiologia do Exercício. In: PITHON-CURI, T.; ROMANATTO, T. Sistema Respiratório. 1. ed. Rio de Janeiro: Guanabara Koogan, 2013. p. 115-134. ______ Fisiologia do Exercício. In: SILVEIRA, L. Estresse oxidativo e Atividade Muscular. 1. ed. Rio de Janeiro: Guanabara Koogan, 2013. p. 283-287. PLISK, S.; STONE, M. Periodization strategies. Strength and Conditioning Journal, v. 25, n. 6, p. 19-37, 2003. PLOTNIKOV, E.; CHUPYRKINA, A.; PEVZNER, I.; ISAEV, N.; ZOROV, D. Myoglobin causes oxidative stress, increase of NO production and dysfunction of kidney´s mitochondria. Biochimica et Biophysica Acta, v. 1792, n. 8, p. 796-803, 2009. POLIDORI, M. et al. Physical activity and oxidative stress during aging. International Journal of Sports Medicine, v. 21, n. 3, p. 154-157, 2000. POLOTOW, T.; SOUZA-JUNIOR, T.; SAMPAIO, R.; OKUYAMA, A.; GANINI, D.; VARDARIS, C.; ALVES, R.; McANULTY, S.; BARROS, M. Effect of 1 Repetition Maximum, 80% Repetition Maximum, and 50% Repetition Maximum Strength Exercise in Trained Individuals on Variations in Plasma Redox Biomarkers. The Journal of Strength & Conditioning Research, v. 31, n. 9, p. 2489-2497, 2017. PONKA, P. Iron Metabolism: Physilogy and Pathophysiology. The Journal Trace Elements in Experimental Medicine, v. 13, n. 1, p. 73-83, 2000. POWERS, S.; JACKSON, M. Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Pysiological Reviews, v. 88, n. 4, p. 1243-1263, 2008. PRASAD, M.; ENGELMAN, R.; JONES, R.; DAS, D. Effects of oxyradicals on oxymyoglobin: deoxygenation, haem removal and iron release. Biochemical Journal, v. 263, n. 3, p. 731-736, 1989. PRESTES, J. et al. Papel da Interleucina-6 como um sinalizador em diferentes tecidos durante o exercício físico. Fitness & Performance Journal, v. 5, n. 6, p. 348-353, 2006. ______; FOSCHINI, D.; MARCHETTI, P.; CHARRO, M.; TIBANA, R. Prescrição e periodização do treinamento de força em academias. 4. ed. Barueri: Manole, 2016. PROUSEK, J. Fenton chemistry in biology and medicine. Pure and Applied Chemistry, v. 79, n. 12, p. 2325-2338, 2007. RADÁK, Z.; ZHAO, Z.; KOLTAI, E.; OHNO, H.; ATALAY, M. Oxygen consumption and usage during physical exercise: The balance between oxidative stress and ROS-dependent adaptive signaling. Antioxidants & Redox Signaling, v.18, n. 1, p. 1208-1246, 2013. RAMALHO, G.; MAZINI FILHO, M.; RODRIGUES, B.; VENTURINI, G.; SALGUEIRO, R.; PACE JUNIOR, R.; MATOS, D. O teste de 1RM para predição da carga no treino de hipertrofia e sua relação com o número máximo de repetições executadas. Brazilian Journal of Biomotricity, v. 5, n. 3, p. 168-174, 2011. RAMEL, A.; WAGNER, K.; ELMADFA, I. Plasma antioxidants and lipid oxidation after submaximal resistance exercise in men. European Journal of Nutrition, v. 43, n. 1, p. 2-6, 2004. REEDER, B. The redox activity of hemoglobins: from physiologic functions to pathologic mechanisms. Antioxidants & redox signaling, v. 13, n. 7, p. 1087 1123, 2010. ______; SHARPE, M.; KAY, A.; KERR, M.; MOORE, K.; WILSON, M. Toxicity of myoglobin and haemoglobin: oxidative stress in patients with rhabdomyolysis and subarachnoid haemorrhage. Biochemical Society Transactions, v. 30, n. 4, p. 745-748, 2002. ______; WILSON, M. Hemoglobin and myoglobin associated oxidative stress: from molecular mechanisms to disease States. Current Medicinal Chemistry, v. 12, n. 23, p. 2741-27551, 2005. REID, M. Nitric oxide, reactive oxygen species, and skeletal muscle contraction. Medicine & Science in Sports & Exercise, v. 33, n. 3, p. 371-376, 2001. RHEA, M.; BALL, S.; PHILLIPS, W.; BURKETT, L. A comparison of linear and daily undulating periodized programs with equated volume and intensity for strength. The Journal of Strength & Conditioning Research, v. 16, n. 1, p. 250-255, 2002. ______ et al. A comparasion of linear and daily undulating periodized programs with equated volume and intensity for local muscular endurance. The Journal of Strength & Conditioning Research, v. 17, n. 1, p. 82-87, 2003. SAKAMOTO, A; SINCLAIR, P. Effect of movement velocity on the relationship between training load and the number of repetitions of bench press. The Journal of Strength & Conditioning Research, v. 20, n. 1, p. 523-527, 2006. SAKELLIOU, A. et al. Evidence of a redox dependent regulation of immune responses to exercise-induced inflammation. Oxidative Medicine and Cellular Longevity, 2016. doi:https://doi.org/10.1155/2016/2840643 SANDOVAL, A. Medicina do esporte: princípios e prática. Porto Alegre: Artimed, 2005. SANTANA, H.; MOREIRA, S.; ASANO, R.; SALES, M.; CORDOVA, C.; CAMPBELL, C.; ESPINDOLA, F.; SPOSITO, A.; NOBREGA, O.; SIMOES, H. Exercise intensity modulates nitric oxide and blood pressure responses in hypertensive older women. Aging clinical and experimental research, v. 25, n. 1, p. 43-48, 2013. SANTAREM, J. Musculação em todas as idades: Comece a praticar antes que seu médico recomende. Barueri: Manole, 2012. SCHAER, D. et al. Hemolysis and free hemoglobin revisited: exploring hemoglobin and hemin scavengers as a novel class of therapeutic proteins. Blood, v. 121, n. 8, p. 1276-1284, 2013. SCHEELE, C.; NIELSEN, S.; PEDERSEN, B. ROS and myokines promote muscle adaptation to exercise. Trends in Endocrinology & Metabolism, v. 20, n. 3, p. 95-99, 2009. SCHMIDT, P. Regulation of Iron Metabolism by Hepcidin under Conditions of Inflammation. The Journal of Biological Chemistry, v. 290, n. 31, p.18975-18983, 2015. SCHNEIDER, C; OLIVEIRA, A. Radicais livres de oxigênio e exercício: mecanismos de formação e adaptação ao treinamento físico. Revista Brasileira de Medicina do Esporte, v. 10, n. 4, p. 308-313, 2004. SCHOBERSBERGER, W. et al. Consequences of 6 weeks of strength training on red cell O2 transport and iron status. European Journal Applied Physiology and Occupational Physiology, v. 60, n. 1, p. 163-168, 1990. SCHOENFELD, B.; OGBORN, D.; KRIEGER, J. Effects of Resistance Training Frequency on Measures of Muscle Hypertrophy: a systematic Rewiews and Meta-Analysis. Sports Medicine, v. 46, n. 11, p. 1689-1697, 2016. SELBY, G.; EICHNER, E. Endurance swimming, intravascular hemolysis, anemia, and iron depletion. The American Journal of Medicine, v. 81, n. 1, p. 791-794, 1986. SERRANO, A.; BAEZA-RAJA, B.; PERDIGUERO, E.; JARDI, M.; MUNOZ-CANOVES, P. Interleukin-6 is an essential regulator of satellite cell-mediated skeletal muscle hypertrophy. Cell Metabolism, v. 7, n. 1, p. 33-44, 2008. SFORZO, G.; TOUEY, P. Manipulating exercise order affects muscular performance during a resistance exercise training session. The Journal of Strength & Conditioning Research, v. 10, n. 1, p. 20-24, 1996. SHAN, X.; TY, A.; JONES, D. Glutathione-dependent protection against oxidative injury. Pharmacology & Therapeutics, v. 47, n. 1, p. 61-71, 1990. SHASKEY, D.; GREEN, G. Sports haematology. Sports Medicine, v. 29, n. 1, p. 27-38, 2000. SHARP, P. Intestinal iron absorption. Regulation by dietary & systemic factors. International Journal for Vitamin and Nutrition Research, v. 80, n. 5, p. 231-242, 2010. SHEPARD, R.; SHEK, P. Heavy exercise nutrition and immune function: Is there a connection? International Journal of Sports Medicine, v. 16, n. 1, p. 491-497, 1995. SIEMS, W.; SOMMERBURG, O.; GRUNE, T. Erythrocyte free radical and energy metabolism. Clinical Nephrology, v. 53, n. 1, p. 9-17, 2000. SIES, H. Strategies of antioxidant defence. European Journal of Biochemistry, v. 215, n. 2, p. 213-219, 1993. SILVA, F.; MACEDO, D. Exercício físico, processo inflamatório e adaptação: uma visão geral. Revista Brasileira de Cineantropometria & Desempenho Humano, v. 13, n. 4, p. 320-328, 2011. SIMÃO, R.; POLY, M.; LEMOS, A. Prescrição de exercícios através do teste de uma repetição máxima (T1RM) em homens treinados. Fitness & Performance Journal, v. 3, n. 1, p. 47-51, 2004. SINGH, T. et al. A comparison of muscle damage, soreness and performance following a simulated contact and non-contact team sport activity circuit. Journal of Science and Medicine in Sport, v. 14, n. 5, p. 441-446, 2011. SJÖDIN, B.; WESTING, Y.; APPLE, F. Biochemical mechanisms for oxygen free radical formation during exercise. Sports Medicine, v. 10, n. 4, p. 236-254, 1990. SMITH, C.; KRUGER, M.; SMITH, R.; MYBURGH, K. The inflammatory response to skeletal muscle injury: illuminating complexities. Sports Medicine, v. 38, n. 11, p. 947-969, 2008. SMITH, J. Exercise, training and red blood cell turnover. Sports Medicine, v. 19, n. 1, p. 9-31, 1995. SMITH, L. Cytokine hypothesis of overtraining: a physiological adaptation to excessive stress? Medicine & Science in Sports & Exercise, v. 32, n. 1, p. 317-331, 2000. SMITH, M.; REID, M. Redox modulation of contractile function in respiratory and limb skeletal muscle. Respiratory Physiology & Neurobiology, v. 151, n. 2-3, p. 229-241, 2006. SOSA, V. et al. Oxidative stress and cancer: An overview. Ageing Research Reviews, v. 12, n. 1, p. 376-390, 2013. SOUZA, C.; FERNANDES, L.; CYRINO, E. Produção de espécies reativas de oxigênio durante o exercício aeróbio e anaeróbio. Revista Brasileira de Cineantropometria & Desempenho Humano, v. 8, n. 2, p. 102-109, 2006. SOUZA, J.; OLIVEIRA, R.; BLOTTA, M.; COELHO, O. Níveis séricos de interleucina-6 (IL-6), interleucina-18 (IL-18) e proteína-C reativa (PCR) na síndrome coronariana aguda sem supradesnivelamento do ST em pacientes com diabete tipo 2. Arquivos Brasileiros de Cardiologia, v. 90, n. 1, p. 94-99, 2008. SOUZA-JUNIOR, T.; LORENÇO-LIMA, L.; GANINI, D.; VARDARIS, C.; POLOTOW, T.; BARROS, M. Delayed uric acid accumulation in plasma provides additional anti-oxidant protection against iron-triggered oxidative stress after a wingate test. Biology of Sport, v. 31, n. 1, p. 271-276, 2014. ST PIERRE, J.; BUCKINGHAM, J.; ROEBUCK, S.; BRAND, M. Topology of superoxide production from different sites in the mitochondrial electron transport chain. The Journal of Biological Chemistry, v. 277, n. 1, p. 44784-44790, 2002. STEENSBERG, A. The role of IL-6 in exercise-induced immune changes and metabolism. Exercise Immunology Reviews, v. 9, n. 1, p. 40-47, 2003. STEINBACHER, P.; ECKL, P. Impact of oxidative stress on exercising skeletal muscle. Biomolecules, v. 5, n. 1, p. 356-377, 2015. STONE, M. et al. Comparison of the effects of three different weight-training programs on the one repetition maximum squat. The Journal of Strength and Conditioning Research, v. 14, n. 3, p. 332-337, 2000. STUPKA, N. et al. Cellular adaptation to repeated eccentric exercise-induced muscle damage. Journal of Applied Physiology, v. 91, n. 4, p. 1669-1678, 2000. SUZUKI, K. et al. East-west gradients in the photosynthetic potential of phytoplankton and iron concentration in the subarctic Pacific Ocean during early summer. Limnology and Oceanography, v. 47, n. 6, p. 1581-1594, 2002. SZYGULA, Z. Erythrocytic system under the influence of physical exercise and training. Sports Medicine, v. 10, n. 3, p. 181-197, 1990. TANDARA, L.; SALAMUNIC, I. Iron metabolism: current facts and future directions. Biochemia Medical, v. 22, n. 3, p. 311-328, 2012. TENOPOULOU, M.; KURZ, T.; DOULIAS, P.; GALARIS, D.; BRUNK, U. Does the calcein-AM method assay the total cellular „labile iron pool‟ or only a fraction of it? Biochemical Journal, v. 403, n. 1, p. 261-266, 2007. TESCH, P.; THORSSON, A.; COLLIANDER, E. Effects of eccentric and concentric resistance training on skeletal muscle substrates, enzymes activities and capillary supply. Acta Physiologica Scandinavica, v. 140, n. 1, p. 575-580, 1990. THEIL, E.; MATZAPETAKIS, M.; LIU, X. Ferritins: iron/oxygen biominerals in protein nanocages. Journal of Biological Inorganic Chemistry, v. 11, n. 1, p. 803-810, 2006. THEODOROU, A.; NIKOLAIDIS, V.; PASCHALIS, V.; PASCHALIS, V.; KOUTSIAS, S.; PANAVIOUTOU, G.; FATOUROS, I.; KOUTEDAKIS, Y.; JAMURTAS, A. No effect of antioxidant supplementation on muscle performance and blood redox status adaptations to eccentric training. American Journal of Clinical Nutrition, v. 93, n. 6, p. 1373-1383, 2011. TRANDAFIR, F.; HOOGEWIJS, D.; ALTIERI, F.; RIVETTI DI VAL CERVO, P.; RAMSER, K.; VAN DOORSLAER, S.; VANFLETEREN, J.; MOENS, L.; DEWILDE, S. Neuroglobin and cytoglobin as potential enzyme or substrate. Gene, v. 398, n. 1, p. 103-113, 2007. TRIVEDI, R.; REBAR, L.; BERKA, E.; STRONG, L. New enzymatic method for serum uric acid at 500 nm. Clinical Chemistry, v. 24, n. 1, p. 1908-1911, 1978. UCHOA, R.; FERNANDES, C. Rabdomiólise induzida por exercício e risco de hipertermia maligna. Relato de caso. Revista Brasileira de Anestesiologia, v. 53, n. 1, p. 63-68, 2003. URSO, M.; CLARKSON, P. Oxidative stress, exercise, and antioxidant supplementation. Toxology, v. 189, n. 1-2, p. 41-54, 2003. VALKO, M.; LEIBFRITZ, D.; MONCOL, J.; CRONIN, M.; MAZUR, M.; TELSER, J. Free radicals and antioxidants in normal physiological functions and human disease. The International Journal of Biochemistry & Cell Biology, v. 39, n. 1, p. 44-84, 2007. VENJATRAMAN, J.; FERNANDES, G. Exercise, immunity and aging. Aging, v. 9, n. 1-2, p. 42-56, 1997. VERGELY, C.; PERRIN-SARRADO, C.; CLERMONT, G; ROCHETTE, L. Postischemic recovery and oxidative stress are independent of nitric-oxide synthases modulation in isolated rat heart. Journal of Pharmacology and Experimental Therapeutics, v. 303, n. 1, p. 149-157, 2002. VICENT, H.; MORGAN, J.; VICENT, K. Obesity Exacerbates oxidative stress levels after acute exercise. Medicine & Science in Sports & Exercise, v. 36, n. 5, p. 772-779, 2004. VIERCK, J. et al. Satellite cell regulation following myotrauma caused by resistance exercise. Cell Biology International, v. 24, n. 5, p. 263-272, 2000. VOLLAARD, N.; SHEARMAN, J.; COOPER, C. Exercise-induced oxidative stress: myths, realities and physiological relevance. Sports Medicine, v. 35, n. 12, p. 1045-1062, 2005. VULETICH, J.; OSAWA, Y.; AVIRAM, M. Enhanced lipid oxidation by oxidatively modified myoglobin: role of protein-bound heme. Biochemical and Biophysical Research Communications, v. 269, n. 1, p. 647-651, 2000. WALLACE, W.; HOUTCHENS, R.; MAXWELL, J.; CAUGHEY, W. Mechanism of autoxidation for hemoglobins and myoglobin. The Journal of Biological Chemistry, v. 257, n. 1, p. 4966-4969, 1982. WANG, J.; CHEN, G.; PANTOPOULOS, K. Nitric oxide inhibits the degradation of IRP2. Molelular and Cellular Biology, v. 25, n. 4, p. 1347-1353, 2005. WANG, J.; PANTOPOULOS, K. Regulation of Cellular Iron Metabolism. Biochemical Journal, v. 434, n. 1, p. 365-381, 2011. WAROLIN, J.; COENEN, K.; KANTOR, J.; WHITAKER, L.; WANG, L.; ACRA, S.; ROBERTS, L.; BUCHOWSKI, M. The relationship of oxidative stress, adiposity and metabolic risk factors in healthy black and white American youth. Pediatric Obesity, v. 9, n. 1, p. 43-52, 2014. WATSON, T. et al. Antioxidant restriction and oxidative stress in short duration exhaustive exercise. Medicine & Science in Sports & Exercise, v. 37, n. 2, p. 63-71, 2005. WEISS, G.; GOOSSEN, B.; DOPPLER, W.; FUCHS, D.; PANTOPOULOS K.; WERNER-FELMAYER, G.; WACHTER, H.; HENTZE, M. Translational regulation via iron-responsive elements by the nitric oxide/NO-synthase pathway. The EMBO Journal, v. 12, n. 1, p. 3651-3657, 1993. WELC, S.; CLANTON, T. The regulation of IL-6 implicates skeletal muscle as an integrative stress sensor and endocrine organ. Experimental Physiology, v. 98, n. 2, p. 359-371, 2013. WELCH, K. et al. Deleterious iron-mediated oxidation of biomolecules. Free Radical Biology and Medicine, v. 32, n. 7, p. 577-583, 2002. WESSLING-RESNICK, M. Iron Homeostasis and Inflammatory Response. Annual Review of Nutrition, v. 30, n. 1, p. 105-122, 2010. WHEATLEY, R. Some recent trends in the analytical chemistry of lipid peroxidation. TrAC Trends in Analytical Chemistry, v. 19, n. 10, p. 617-628, 2000. WICHER, K.; FRIES, E. Evolutionary aspects of hemoglobin scavengers. Antioxidants & Redox Signaling, v. 12, n. 2, p. 249-259, 2010. WILLIAMS, M. et al. Resistance exercise in individuals with and without cardiovascular disease. Medicine & Science in Sports & Exercise, v. 116, n. 1, p. 572-584, 2007. WILSON, M.; REEDER, B. Oxygen-binding haem proteins. Experimental Physiology, v. 93, n. 1, p. 128-132, 2008. WINETT, R.; CARPINELLI, R. Potential health-related benefits of resistance training. Preventive Medicine, v. 33, n. 5, p. 503-513, 2001. WITTENBERG, J.; WITTENBERG, B. Myoglobin function reassessed. Journal of Experimental Biology, v. 206, n. 1, p. 2011-2020, 2003. YASUDA, T.; FUNAKUBO, A.; MIYAWAKI, F.; KAWAMURA, T.; HIGAMI, T.; FUKUI, Y. Influence of static pressure and shear rate on hemolysis of red blood cells. ASAIO Journal, v. 47, n. 1, p. 351-353, 2001. ZAPORA, E.; JAROCKA, I. Hemoglobin-source of reactive oxygen species. Postepy Higieny i Medyciny Doswiadczaine, v. 67, n. 1, p. 214-220, 2013. ZATSIORSKY, V.; KRAEMER, W. Ciência e pratica do treinamento de força. 2. ed., São Paulo: Phorte, 2008. ZEMBRON-LACNY, A.; SLOWISKA, M.; ZIEMA, A. Integration of the thiol redox status with cytokine response to physical training in professional basketball players. Physiological Research, v. 59, n. 2, p. 239-245, 2010. ZHANG, C.; LI, Y.; WU, Y.; WANG, X.; DU, J. Interleukin-6/signal transducer and activator of transcription (STAT3) pathway is essential for macrophage infiltration and myoblast proliferate on during muscle regeneration. The Journal of Biological Chemistry, v. 288, n. 3, p. 1489-1499, 2013. ZHANG, W., et al. A novel hemoglobin-based oxygen carrier, polymerized porcine hemoglobin inhibits H2O2-induced cytotoxicity of endothelial cells. Artificial Organs, v. 36, n. 2, p. 151-160, 2012. ZOPPI, C.; MACEDO, D. Overreaching-induced oxidative stress, enhanced HPS72 expression, antioxidant and oxidative enzymes downregulation. Scandinavian Journal of Medicine & Science in Sports, v. 18, n. 1, p. 67-76, 2008info:eu-repo/semantics/openAccessreponame:Repositório do Centro Universitário Braz Cubasinstname:Centro Universitário Braz Cubas (CUB)instacron:CUB2020-03-18T21:58:24Zoai:repositorio.cruzeirodosul.edu.br:123456789/319Repositório InstitucionalPUBhttps://repositorio.brazcubas.edu.br/oai/requestbibli@brazcubas.edu.bropendoar:2020-03-18T21:58:24Repositório do Centro Universitário Braz Cubas - Centro Universitário Braz Cubas (CUB)false
dc.title.none.fl_str_mv Estudo da relação entre homeostase de ferro, estresse oxidativo e inflamação: do modelo molecular ao treinamento de força periodizado e não periodizado
Crosslinks between iron homeostasis, oxidative stress, and inflammation: from a molecular model to the periodized and non-periodized strength training
title Estudo da relação entre homeostase de ferro, estresse oxidativo e inflamação: do modelo molecular ao treinamento de força periodizado e não periodizado
spellingShingle Estudo da relação entre homeostase de ferro, estresse oxidativo e inflamação: do modelo molecular ao treinamento de força periodizado e não periodizado
Sampaio, Ricardo Camões
Homeostase de ferro
Estresse oxidativo
Citocinas
CNPQ::CIENCIAS DA SAUDE
title_short Estudo da relação entre homeostase de ferro, estresse oxidativo e inflamação: do modelo molecular ao treinamento de força periodizado e não periodizado
title_full Estudo da relação entre homeostase de ferro, estresse oxidativo e inflamação: do modelo molecular ao treinamento de força periodizado e não periodizado
title_fullStr Estudo da relação entre homeostase de ferro, estresse oxidativo e inflamação: do modelo molecular ao treinamento de força periodizado e não periodizado
title_full_unstemmed Estudo da relação entre homeostase de ferro, estresse oxidativo e inflamação: do modelo molecular ao treinamento de força periodizado e não periodizado
title_sort Estudo da relação entre homeostase de ferro, estresse oxidativo e inflamação: do modelo molecular ao treinamento de força periodizado e não periodizado
author Sampaio, Ricardo Camões
author_facet Sampaio, Ricardo Camões
author_role author
dc.contributor.none.fl_str_mv Barros, Marcelo Paes de
11206444886
http://lattes.cnpq.br/2058347369890530
Barros, Marcelo Paes de
11206444886
http://lattes.cnpq.br/2058347369890530
Gorjão, Renata
http://lattes.cnpq.br/6211339830408691
Boaventura, Maria Fernanda Cury
http://lattes.cnpq.br/3746378504513606
Silva, Marcelo Guimarães
http://lattes.cnpq.br/4567502558957747
Abad, César Cavinato Cal
http://lattes.cnpq.br/7774202156405785
dc.contributor.author.fl_str_mv Sampaio, Ricardo Camões
dc.subject.por.fl_str_mv Homeostase de ferro
Estresse oxidativo
Citocinas
CNPQ::CIENCIAS DA SAUDE
topic Homeostase de ferro
Estresse oxidativo
Citocinas
CNPQ::CIENCIAS DA SAUDE
description Iron is the most abundant essential metal in living organisms and it has a fundamental physiological and metabolic roles in animals and humans. On the other hand, iron might be harmful when its homeostasis is disturbed, as iron ions are main catalysts for the formation of Reactive Oxygen and Nitrogen Species (RONS). The aim of this study was to investigate the relationship between iron homeostasis, physiological markers, and inflammatory cytokines in strength training subjects (ST). The study also addressed molecular in vitro aspects, by simulating resting or exhaustion conditions in plasma (or interstitial) after ST practice, focusing on the catalysis of heme proteins, hemoglobin and myoglobin, in the oxidative insult. Twenty-six male subjects, between 20 to 45 years-old, were divided in 3 training groups: linear periodized training (PL), non-linear periodization (PNL) and non-periodized (NP), for 10 consecutive weeks. Results in vitro suggest that increasing concentrations of lipidic peroxides induce proportional increases of peroxidase activities of myoglobin even at rest conditions, which may culminate in increases of oxidative stress. In humans, although observed increases in iron concentrations after the tests at 80% of a maximal repetition, they were less expressive during weeks 3, 12 and 13, respectively (NP= 92,32%, 87,10% e 71,88%; PL =65,01%, 38,31% e 23,86%; PNL= 86,35%, 79,21% e 76%). The iron-binding capacity of PL subjects was significantly increased in the post test of week 12. The concentrations of TNF-α showed significant increases in post tests for NP (week 3) We can suggest that the ST protocols applied here promoted iron homeostasis rebalances with proportional pro-inflammatory cytokine responses at model NP upon strength test performed along the study.
publishDate 2019
dc.date.none.fl_str_mv 2019-04-05
2020-02-06T01:01:30Z
2020
2020-02-06T01:01:30Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv SAMPAIO, R. C. Estudo da relação entre homeostase de ferro, estresse oxidativo e inflamação em duas hierarquias: do modelo molecular ao treinamento de força periodizado e não periodizado. 178 f. Tese (Doutorado Interdisciplinar em Ciências da Saúde) – Universidade Cruzeiro do Sul, São Paulo, 2019.
http://repositorio.cruzeirodosul.edu.br/handle/123456789/319
identifier_str_mv SAMPAIO, R. C. Estudo da relação entre homeostase de ferro, estresse oxidativo e inflamação em duas hierarquias: do modelo molecular ao treinamento de força periodizado e não periodizado. 178 f. Tese (Doutorado Interdisciplinar em Ciências da Saúde) – Universidade Cruzeiro do Sul, São Paulo, 2019.
url http://repositorio.cruzeirodosul.edu.br/handle/123456789/319
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv AAGAARD, P. Training-induced changes in neural function. Exercise and Sport Science Reviews, v. 31, n. 2, p. 61-67, 2003. AGUIAR, A. et al. High-intensity physical exercise disrupts implicit memory in mice: involvement of the striatal glutathione antioxidant system and intracellular signaling. Neuroscience, v. 171, n. 4, p. 1216-1227, 2010. AHTIAINEN, J.; PAKARINEN, A.; ALEN, M.; KRAEMER, W.; HÄKKINEN, K. Short vs. long rest period between the sets in hypertrophic resistance training: influence on muscle strength, size, and hormonal adaptations in trained men. The Journal of Strength & Conditioning Research, v. 19, n. 1, p. 572-82, 2005. ALLAIN, C.; POON, L.; CHAN, C.; RICHMOND, W.; FU, P. Enzimatic determination of total serum cholesterol. Clinical Chemistry, v. 20, n. 4, p. 470-475, 1974. AL-QENAEI, A. et al. Role of intracellular labile iron, ferritin, and antioxidant defense in resistance of chonically adapted Jurkat T cells to hydrogen peroxide. Free Radical Biology and Medicine, v. 68, n. 1, p. 87-100, 2014. AMERICAN COLLEGE OF SPORTS MEDICINE. Manual de Pesquisa das Diretrizes do ACSM para os Testes de Esforço e sua Prescrição. 4. ed., Guanabara Koogan, 2003. AMERICAN COLLEGE OF SPORTS MEDICINE. Progression Models in Resistance Training for Healthy Adults. Medicine & Science in Sports & Exercise, v. 41, n. 3, p. 687-708, 2009. AMERICAN COLLEGE OF SPORTS MEDICINE. Progression models in resistance training for healthy adults. Medicine & Science in Sports & Exercise, v. 34, n. 1, p. 364-380, 2002. AMERICAN COLLEGE OF SPORTS MEDICINE. Recursos do ACSM para o Personal Trainer. Rio de Janeiro: Guanabara Koogan, 2011. ANDRADE, M.; de LIRA, C. Fisiologia do Exercício. In: GRASSI, E.; SOARES, V.; de LIRA, C.; SILVA, M. Avaliação da composição corporal. 1. ed. Barueri: Manole, 2016. p. 411-463. ______ Fisiologia do Exercício. In: ROCHA, A. Princípios científicos do treinamento físico. 1. ed. Barueri: Manole, 2016. p. 467-484. ______ Fisiologia do Exercício. In: VAISBERG, M.; dos SANTOS, J.; BACHI, A. Exercício físico e sistema imune: uma relação relevante. 1. ed. Barueri: Manole, 2016. p. 937-962. ANTUNES-NETTO, J.; SILVA, L.; MACEDO, D. Biomarcadores de Estresse Oxidativo: Novas Possibilidades de Monitoramento em Treinamento Físico. Revista Brasileira de Ciências e Movimento, v. 13, n. 2, p. 7-15, 2005. AROSIO, P.; LEVI, S. Cytosolic and mitochondrial ferritins in the regulation of cellular iron homeostasis and oxidative damage. Biochimica et Biophysica Acta, v. 1800, n. 8, p. 783-792, 2010. ASTRAND, P.; RADAAL. Tratado de fisiologia do exercício. Rio de Janeiro: Guanabara, 1987. AUGUSTO, O. Radicais livres: bons, maus e naturais. São Paulo: oficina de textos, 2006. AZIZBEIGI, K.; STANNARD, S.; ATASHAK, S.; HAGHIGHI, M. Antioxidant enzymes and oxidative stress adaptation to exercise training: Comparison of endurance, resistance, and concurrent training in untrained Males. Journal of Exercise Science & Fitness, v. 12, n. 1, p. 1-6, 2014. BAECHLE, T.; EARLE, R. Fundamentos do Treinamento de Força e do Condicionamento. 3. ed. Barueri: Manole, 2010. BAER, J.; AYRES, S. Estrogen levels and lipid peroxidation following exercise. Preventive Cardiology, v. 4, n. 1, p. 85-87, 2001. BALLOR, D.; BECQUE, M.; KATCH, V. Metabolic responses during hydraulic resistance exercise. Medicine and Science in Sports and Exercise, v. 19, n. 1, p. 363-367, 1987. BANERJEE, A. et al. Oxidant, antioxidant and physical exercise. Molecular and cellular biochemistry, v. 253, n. 1-2, p. 307-312, 2003. BARREIROS, A.; DAVID, J.; DAVID, J. Estresse oxidativo: relação entre geração de espécies reativas e defesa do organismo. Química Nova, v. 29, n. 1, p. 113-123, 2006. BARROS, M. et al. Effects of acute creatine supplementation on iron homeostasis and uric acid-based antioxidant capacity of plasma after wingate test. Journal of the International Society of Sports Nutrition, v. 9, n. 25, p. 1-10, 2012. BARROS, M.; SILVEIRA, L.; CURI, R.; TORRES, M.; OTTIN, R. Phytochemicals, herbs and antioxidants currently used as supplements for endurance and resistance exercise: facts, foes, and misconceptions. Current Topics in Phytochemistry, v. 9, n. 1, p. 67-72, 2008. BAYNES, J.; DOMINICZAC, M. Bioquímica Médica. 4. ed. Rio de JANEIRO: Elsevier, 2015. p. 37-62. BEARD, J.; TOBIN, B. Iron status and exercise. The American journal of clinical nutrition, v. 72, n. 2, p. 594-597, 2000. BENZIE, I.; STRAIN, J. The ferric reducing ability of plasma (FRAP) as a measure of „„Antioxidant Power‟‟: The FRAP assay. Analytical Biochemistry, v. 239, n. 1, p. 70-76, 1996. BERNECKER, C.; SCHERR, J.; SCHINNERS, S.; BRAUN, S.; SCHERBAUM, W.; HALLE, M. Evidence for an exercise induced increase of TNF-α and IL-6 in marathon runners. Scandinavian Journal of Medicine & Science in Sports, v. 23, n. 2, p. 207-214, 2013. BIESEK, S.; ALVES, L.; GUERRA, I. Estratégias de Nutrição e Suplementação no Esporte. In: LESER, S.; ALVES, L. Os lipídios no exercício. 3. ed. Barueri: Manole, 2015. p. 37-62. BILSKA-WILKOSZ, A.; ICIEK, M.; GÓRNY, M.; PACHEL-KOWALCZYK, D. The role of hemoproteins: hemoglobin, myoglobin and neuroglobin in endogenous thiosulfate production processes. International Journal of Molecular Sciences, v. 18, n. 6, p.1315-1324, 2017. BOMPA, T.; CORNACCHIA, L. Treinamento de Força Consciente. São Paulo: Phorte, 2000. BORG, G. Psychophysical bases of perceived exertion during physical exercise. Medicine & Science in Sports & Exercise, v. 14, n. 5, p. 377-381, 1982. BOVERIS, A. Biochemistry of free radicals: from electrons to tissues. Medicina, v. 58, n. 1, p. 350-356, 1998. BRANCACCIO, P.; LIPPI, G.; NICOLA, M. Biochemical markers of muscular damage. Clinical Chemistry and Laboratory Medicine. v. 48, n. 6, p. 757-767, 2010. BRAND, M. The sites and topology of mitochondrial superoxide production. Experimental Gerontology, v. 45, n. 1, p. 466-472, 2010. BREDT, D. Endogenous nitric oxide synthesis: biological functions and pathophysiology. Free Radical Research, v. 31, n. 6, p. 577-596, 1999. BRENNER, I.; NATALE, V.; VASILOU, P.; MOLDOVEANU, A. SHEK, P.; SHEPHARD, R. Impact of three different types of exercise on components of the inflammatory response. European Journal of Applied Physiology and Occupational Physiology, v. 80, n. 5, p. 452-460, 1999. BREWER, G. Iron and copper toxicity in diseases of aging, particularly atherosclerosis and Alzeimer`s disease. Experimental Biology and Medicine, v. 88, n. 1, p. 7-15, 2007. ______; EATON, J. Erythrocyte Metabolism: Interaction with Oxygen Transport: Science, v. 171, n. 1, p. 1205-2011, 1971. BRICKSON, S.; HOLLANDER, J.; CORR, D.; JI, L.; BEST, T. Oxidant production and immune response after stretch injury in skeletal muscle. Medicine & Science in Sports & Exercise, v. 33, n. 1, p. 2010-2015, 2001. BRILL, P.; MACERA, C.; DAVIS, D.; BLAIR, S. Muscular strength and physical function. Medicine & Science in Sports & Exercise, v. 32, n. 1, p. 412-416, 2000. BROWN, L. Treinamento de Força. Barueri: Manole, 2008. BROWN, M. et al. Nitric oxide biomarkers increase during exercise-induced vasodilation in the forearm. International Journal of Sports Medicine, v. 21, n. 1, p. 83-89, 2000. BRUNORI, M. Nitric oxide, cytochrome-c oxidase and myoglobin. Trends in Biochemical Sciences, v. 26, n. 1, p. 21-23, 2001. BRUUNSGAARD, H.; GALBO, H.; HALKJAER-KRISTENSEN, J.; JOHANSEN, T.; MACLEAN, D.; PEDERSEN, B. Exercise-induced increase in serum interleukin 6 in humans is related to muscle damage. The Journal of Physiology, v. 499, n. 1, p. 833-841, 1997. BUCOLO, G.; DAVID, H. Quantitative-determination of serum triglycerides by use of enzymes. Clinical Chemistry, v. 19, n. 5, p. 476-482, 1973. BUSHMAN, B. Manual Completo de Condicionamento Físico e Saúde do ACSM. São Paulo: Phorte, 2016. CAMASCHELLA, C. Iron and erythropoiesis: a dual relationship. International journal of hematology, v. 93, n. 1, p- 21-26, 2011. ______. Iron- Deficience Anemia. The New England Journal of Medicine, v. 372, n. 19, p. 1832-1843, 2015. CARDOSO, A.; BAGATINI, M.; ROTH, M.; MARTINS, C.; REZER, J.; MELLO, F.; LOPES, F.; MORSCH, V.; SCHETINGER, M. Acute effects of resistance exercise and intermittent intense aerobic exercise on blood cell count and oxidative stress in trained middle-aged women. Brazilian Journal of Medical and Biological Research, v. 45, n. 1, p. 1172-1182, 2012. CARLSON, L.; JONKER, B.; WAYNE, L.; WESTCOTT, J, JAMES, P. Neither repetition duration nor number of muscle actions affect strength increases, body composition, muscle size, or fasted blood glucose in trained males and females. Applied Physiology, Nutrition, and Metabolism, 2018. doi: https://doi.org/10.1139/apnm-2018-0376. CASSINA, A. et al. Citocrome c Nitration by Peroxynitrite. The Journal of Biological Chemistry, v. 275, n. 28, p. 21409-21415, 2000. CASTELLANI, R. et al. Iron: the redoxactive center of oxidative stress in Alzheimer disease. Neurochemical Research, v. 32, n. 1, p. 1640-1645, 2007. CHACKO, S. et al. Relations of dietary magnesium intake to biomarkers of inflammation and endothelial dysfunction in an ethnically diverse cohort of postmenopausal women. Diabetes Care, v. 33, n. 2, p. 304-310, 2010. CHANCE, B.; SIES, H.; BOVERIS, A. Hydroperoxide metabolism in mammalian organs. Physiological Reviews, v. 59, n. 3, p. 527-605, 1979. CHAZAUD, B. Inflammation during skeletal muscle regeneration and tissue remodeling: application to exercise-induced muscle damage management. Immunology & Cell Biology, v. 94, n. 2, p. 140-145, 2015. CHILDS, A.; JACOBS, C.; KAMINSKI, T.; HALLIWEL, B.; LEEUWENBURGH, C. Supplementation with vitamin C and N-acetyl-cisteine increases oxidative stress in humans after an acute muscle injury induced by eccentric exercise. Free Radical Biology and Medicine, v. 31, n. 6, p. 745-753, 2001. CHIN, D.; MAR, G.; BALCH, A. Mechanism of autoxidation of iron (II) porphyrins. Detection of a peroxobridged iron (III) porphyrin dimer and the mechanism of its thermal decomposition to the oxo-bridged iron (III) porphyrin dimer. Journal of the American Chemical Society, v. 102, n. 13, p. 4344-4350, 1980. COBURN, J. et al. Neuromuscular responses to three days of velocity-specific isokinetic training. The Journal of Strength & Conditioning Research, v. 20, n. 1, p. 892-898, 2006. COELHO, B. et al. Physical exercise prevents the exacerbation of oxidative stress parameters in chronic kidney disease. Journal of Renal Nutrition, v. 20, n. 3, p. 169-175, 2010. COFFEY, V., et al. Early signaling responses to divergent exercise stimuli in skeletal muscle from well-trained humans. The FASEB Journal, v. 20, n. 1, p. 190-192, 2006. CONRAADS, V.; BECKERS, P.; BOSMANS, J.; de CLERCK, L.; STEVENS, W.; VRINTS, C.; BRUTSAERT, D. Combined endurance/resistance training reduces plasma TNF-α receptor levels in patients with chonic heart failure and coronary artery disease. European Heart Journal, v. 23, n. 1, p. 1854-1860, 2002. CONCEIÇÃO, M.; LIBARDI, C.; NOGUEIRA, F.; BONGANHA, V.; GÁSPARI, A.; CHACON-MIKAHIL, M.; CAVAGLIERI, C.; MADRUGA, V. Effects of eccentric exercise on systemic concentrations of pro- and anti-inflammatory cytokines and prostaglandin (E2): comparison between young and postmenopausal women. European Journal of Applied Physiology, v. 112, n. 1, p. 3205–3213, 2012. COOPER, C. et al. Exercise, free radicals and oxidative stress. Biochemical Society Transactions, v. 30, n. 2, p. 280-285, 2002. CÓRDOVA-MARTINEZ, A. et al. Changes in circulating cytokines and markers of muscle damage in elite cyclists during a multi-stage competition. Clinical Physiology and Functional Imaging, v. 33, n. 1, p. 351-358, 2015. COZZOLINO, S.; COMINETTI, C. Bases Bioquímicas e Fisiológicas da Nutrição nas diferentes fases da vida, na saúde e na doença. In: HENRIQUES, G. Ferro. 1. ed. Barueri: Manole, 2013. p. 228-251. DAMAS, F.; LIBARDI, C.; UGRINOWITSCH, C. High-dose, single fraction image guided intensity-modulated radiotherapy for metastic spinal lesions. European Journal of Applied Physiology, 2017. doi: https://doi.org/10.1007/s00421-017-3792-9. DAVID, J. et. al. Métodos para determinação de atividade antioxidante in vitro em substratos orgânicos. Química Nova, v. 33, n. 10, p. 2202-2210, 2010. DAVIES, K. et al. Free radicals and tissue damage produced by exercise. Biochemical and Biophysical Research Communications, v. 107, n. 4, p. 1198-1205, 1982. de SOUSA, C. et al. The antioxidant Effect of Exercise: A systematic review and Meta-analysis. Sports Medicine, v. 47, n. 2, p. 277-293, 2017. DELLA MANNA, A.; MONTPETIT, S. A novel approach to obtaining reliable PCR results from luminol treated bloodstains. Journal of Forensic Science, v. 45, n. 4, p. 886-890, 2000. DELLAVALLE, D.; HAAS, J. Iron status is associated with endurance performance and training in female rowers. Medicine & Science in Sports & Exercise, v. 44, n. 8, p. 1552-1559, 2012. DEMINICE, R. et al. Blood and salivary oxidative stress biomarkers following an acute session of resistance exercise in humans. Physiology & Biochemistry, v. 31, n. 9, p. 599-603, 2010. DESCHENES, M.; KRAEMER, W. Performance and physiologic adaptations to resistance training. American Journal of Physical Medicine & Rehabilitation, v. 81, n. 1, p. 3-16, 2002. DÉTIVAUD, L. et al. Hepcidin levels in humans are correlated with hepatic iron stores, hemoglobin levels, and hepatic function. Blood, v. 106, n. 2, p. 746-748, 2005. DOULIAS, P.; KOTOGLOU, P.; TENOPOULOU, M.; KERAMISANOU, D.; TZAVARAS, T.; BRUNK, U.; GALARIS, D.; ANGELIDIS, C. Involvement of heat shock protein-70 in the mechanism of hydrogen peroxide-induced DNA damage: the role of lysosomes and iron. Free Radical Biology and Medicine, v. 42, n. 1, p. 567-577, 2007. DRAEGER et al. Controversies of antioxidante vitamins supplmentation in exercise: ergogenic or ergolytic effects in humans? Journal of the International Society of Sports Nutrition, v. 11, n. 1, p. 4, 2014. DRÖGE, W. Free radicals in the physiological control of cell function. Physiological Reviews, v. 82, n. 1, p. 47-95, 2002. EICHNER, E. Runner's macrocytosis: a clue to footstrike hemolysis. Runner's anemia as a benefit versus runner's hemolysis as a detriment. The American Journal of Medicine, v. 78, n. 2, p. 321-325, 1985. EL-SAYED, M.; ALI, N.; EL-SAYED ALI, Z. Haemorheology in exercise and training. Sports Medicine, v. 35, n. 8, p. 649-670, 2005. EVSTATIEV, R.; GASCHE, C. Iron sensing and signaling. Gut, v. 61, n. 6, p. 933-952, 2012. FEBBRAIO, M.; STEENSBERG, A.; FISCHER, C.; KELLER, C.; HISCOCK, N.; PEDERSEN, B. IL-6 activates HSP72 gene expression in human skeletal muscle. Biochemical and Biophysical Research Communications, v. 296, n. 1, p. 1264-1266, 2002. FEHRENBACH, E.; NORTHOFF, H. Free radicals, exercise, apoptosis, and heat shock proteins. Exercise Immunology Review, v. 7, n. 1, p. 66-89, 2001. FERRUCCI, L. Serum IL-6 level and the development of disability in older persons. Journal of the American Geriatrics Society, v. 47, n. 6, p. 639-646, 1999. FINAUD, J.; LAC, G.; FILAIRE, E. Oxidative stress. Relationship with exercise and training. Sports Medicine, v. 36, n. 4, p. 327-58, 2006. FISCHER, C. et al. Plasma levels of interleukin-6 and C-reactive protein are associated with physical inactivity independent of obesity. Scandinavian Journal of Medicine & Science in Sports, v. 17, n. 5, p. 580-587, 2007. FISHER-WELLMAN, K.; BLOOMER, R. Acute exercise and oxidative stress: a 30 year history. Dynamic Medicine, v. 8, n. 1, p. 1-25, 2009. FLECK, S. Non-linear periodization for general fitness & athletes. Journal of Human Kinetics, v. 29, n. 1, p. 41-45, 2011. ______. Periodized strength training: A critical review. Journal of Strength and Condicioning Research, v. 13, n. 1, p. 82-89, 1999. ______; KRAEMER, W. Fundamentos do treinamento de força muscular. 4. ed. Porto Alegre: Artmed: 2017. FLEMING, R.; BACON, B. Orquestration of iron homeostasis. The New England Journal of Medicine, v. 352, n. 17, p.1741-1744, 2005. FLÖGEL, U. et al. Myoglobin: A scavenger of bioactive NO. Proceedings of the National Academy of Sciences of the United States of America, v. 98, n. 2, p. 735-740, 2001. FRAGALA, M.; BI, C.; CHAUMP, M.; KAUFMAN, H.; KROLL, M. Associations of aerobic and strength exercise with clinical laboratory test values. Plos One, 2017. doi: https://doi.org/10.1371/journal.pone.0180840. FRANCISCO, G.; HERNÁNDEZ, C.; SIMÓ, R. Serum markers of vascular inflammation in dyslipidemia. Clinica Chimica Acta, v. 369, n. 1, p. 1-16, 2006. FRAZER, D.; ANDERSON, G. The regulation of iron transport. BioFactors, v. 40, n. 2, p. 206-214, 2014. FREI, B.; STOCKER, R.; ENGLAND, L.; AMES, B. Ascorbate: the most effective antioxidant in human blood plasma. Advances in Experimental Medicine and Biology, v. 264, n. 1, p. 155-163, 1990. FUJITA, S.; DREYER, H.; DRUMMOND, M.; GLYNN, E.; CADENAS, J.; YOSHIZAWA, F.; VOLPI, E.; RASMUSSEN, B. Nutrient signaling in the regulation of human muscle protein synthesis. The Journal of Physiology, v. 582, n. 2, p. 813-823, 2007. GALARIS, D.; BARBOUTI, A.; KORANTZOPOULOS, P. Oxidative stress in hepatic ischemia-reperfusion injury: the role of antioxidants and iron chelating compounds. Current Pharmaceutical Design, v. 12, n. 1, p. 2875-2890, 2006. ______; KORANTZOPOULOS, P. On the molecular mechanism of metmyoglobin-catalyzed reduction of hydrogen peroxide by ascorbate. Free Radical Biology and Medicine, v. 22, n. 1, p. 657-667, 1997. ______; MANTZARIS, M.; AMORGIANIOTIS, C. Oxidative stress and aging: the potential role of iron. Hormones, v. 7, n. 2, p. 114-122, 2008a. ______.; PANTOPOULOS, K. Oxidative stress and iron homeostasis: mechanistic and health aspects. Critical Reviews in Clinical Laboratory Sciences, v. 45, n. 1, p. 1-23, 2008b. GANDRA, P.; MACEDO, D.; ALVES, A. Fontes de espécies reativas de oxigênio na musculatura esquelética durante o exercício. Revista Brasileira de Ensino de Bioquímica e Biologia Molecular, v. 6, n. 2, p. 1-11, 2006. GANZ, T. Molecular control of iron transport. Journal of the American Society of Nephology, v. 18, n. 1, p. 394-400, 2007. ______; NEMETH, E. Hepcidin and disorders of iron metabolism. Annual Review of Medicine, v. 62, n. 1, p. 347-60, 2011. ______.; NEMETH, E. Hepcidin and iron homeostasis. Biochimica et Biophysica Acta, v. 1823, n. 9, p. 1434-1443, 2012. GAROFANO, L.; PIZZAMIGLIO, M.; MARINO, A.; BRIGHENTI, A.; ROMANI, F. A comparative study of the sensitivity and specificity of luminol and fluorescein on diluted and aged bloodstains and subsequent STRs typing. International Congress Series, v. 1288, n. 1, p. 657-659, 2006. GATÉ, L.; PAUL, J.; BA, G.; TEW, K.; TAPIERO, H. Oxidative stress induced in pathologies: the role of antioxidants. Biomedicine & Pharmacotherapy, v. 53, n. 4, p. 169-180, 1999. GAVRIELI, R.; ASHLAGI-AMIRI, T.; ELIAKIM, A.; NEMET, D.; ZIGEL, L.; BERGER-ACHITUV, S.; FALK, B.; WOLACH, B. The Effect of Aerobic Exercise on Neutrophil Functions. Medicine & Science in Sports & Exercise, v. 40, n. 1, p. 1623-1628, 2008. GIULIVI, C.; DAVIES, K. Mechanism of the formation and proteolytic release of H2O2-induced dityrosine and tyrosine oxidation products in hemoglobin and red blood cells. The Journal of Biological Chemistry, v. 276, n. 1, p. 24129-24136, 2001. GLEESON, M. Immune function in sport and exercise. Journal of Applied Physiology, v. 103, n. 2, p. 693-699, 2007. GLEESON, N. et al. Effects of prior concentric training on eccentric exercise induced muscle damage. British Journal of Sports Medicine, v. 37, n. 2, p. 119-125, 2003. GOLDFARB, A.; GARTEN, R.; CHO, C.; CHEE, P.; CHAMBERS, L. Effects of a fruit/berry/vegetable supplement on muscle function and oxidative stress. Medicine & Science in Sports & Exercise, v. 43, n. 3, p. 501-508, 2011. GOLDIFIELD, G., et al. Effects of aerobic training, resistance training, or both on brain-derived neurotrophic factor in adolecents with obesity: The hearty randomized controlled trial. Physiology & Behavior, v. 191, n. 1, p. 138-145, 2018. GOMES, E.; NUNES-SILVA, A.; OLIVEIRA, M. Oxidants, antioxidants, and the beneficial roles of exercise-induced production of reactive species. Oxidative Medicine and Cellular Longevity, 2012. doi: https://doi: 10.1155/2012/756132. GONYEA, W. Role of exercise in inducing increases in skeletal muscle fiber number. Journal of Applied Physiology, v. 48, n. 3, p. 421-426, 1980. GOODWIN, J. et al. Direct measurements of serum iron and binding capacity. Clinical Chemistry, v. 12, n. 2, p. 47-57, 1966. GREGORY, M.; ALBERT, K.; JACK, H.; RAKESH, P. Is methemoglobin an inert bystander, biomarker or a mediator of oxidative stress- The example of anemia? Redox Biology, v. 1, n. 1, p. 65-69, 2013. GRGIC, J.; MIKULIC, P.; PODNAR, H.; PEDISIC, Z. Effects of linear and daily undulating periodized resistance training programs on measures of muscle hypertrophy: a systematic review and meta-analysis. Peer J, 2017. doi: https://doi 10.7717/peerj.3695. GRØNTVED, A.; RIMM, E.; WILLETT, W.; ANDERSEN, L.; HU, F. A prospective study of weight training and risk of type 2 diabetes mellitus in men. Archives of Internal Medicine, v. 172, n. 17, p. 1306-1312, 2012. GROTTO, H. Fisiologia e metabolismo do ferro. Revista Brasileira de Hematologia e Homoterapia, v. 32, n. 2, p. 8-17, 2010. ______. Metabolismo do ferro: uma revisão sobre os principais mecanismos envolvidos em sua homeostase. Revista Brasileira de Hematologia e Hemoterapia, v. 30, n. 5, p. 390-397, 2008. GUTTERIDGE, J. Iron promoters of the Fenton reaction and lipid peroxidation can be released from haemoglobin by peroxides. FEBS Letters, v. 201, n. 2, p. 291-295, 1986. HÄKKINEN, K.; KOMI, P.; ALÉN, M.; KAUHANEN, H. EMG, muscle fiber and force production characteristics during a 1 year training period in elite weightlifters. European Journal of Applied Physiology, v. 56, n. 1, p. 419-427, 1987. HALLIWELL, B. Free radicals, antioxidants and human disease: curiosity, cause or consequence? Lancet, v. 344, n. 1, p. 721-724, 1994. ______; GUTTERIDGE, J. Free radicals in biology and medicine. 4. ed. Oxford University Press, 2007. ______; ______. Role of free radicals and catalytic metal ions in human disease: an overview. Methods in enzymology, v. 186, n. 1, p. 1-85, 1990. ______; ______; CROSS, J. Free radicals, antioxidants, and human disease: where are we now? The Journal of Laboratory and Clinical Medicine, v. 119, n. 6, p. 598-620, 1992. HAMMOUDA, O. et al. Morning-to-evening difference of biomarkers of muscle injury and antioxidant status in young trained soccer players. Biological Rhythm Research, v. 43, n. 4, p. 431-438, 2012. HATANAKA, E.; CURY, R. Ácidos graxos e cicatrização: uma revisão. Revista Brasileira de Ciências Farmacêuticas, v. 88, n. 2, p. 53-58, 2007. HAWKE, T. Muscle Stem Cells and Exercise Training. Exercise and Sport Sciences Reviews, v. 33, n. 2, p. 63-68, 2005. HEENEY, M.; ANDREWS, N. Iron homeostasis and inherited iron overload disorders: an overview. Hematology/Oncology Clinics of North America, v. 18, n. 1, p. 1379-1403, 2004. HENTZE, M.; MUCKENTHALER, M.; GALY, B.; CAMASCHELLA, C. Two to tango: Regulation of mammalian iron metabolism. Cell, v. 142, n. 1, p. 24-38, 2010. HERSLETH, R.; RYDE, U.; RYDBERG, P.; GÖRBITZ, C.; ANDERSSON, K. Structures of the High-Valent Metal-Ion Haem-Oxygen Intermediates in Peroxidases, Oxygenases and Catalases. Journal of Inorganic Biochemistry, v. 100, n. 1, p. 460-476, 2006. HUDSON, M.; HOSICK, P.; MCCAULLEY, G.; SCHRIEBER, L.; WRIEDEN, J.; MCANULTY, S.; TRIPLETT, N.; MCBRIDE, J.; QUINDRY, J. The effect of resistance exercise on humoral markers of oxidative stress. Medicine & Science in Sports & Exercise. v. 40, n. 3, p. 542-548, 2008. HULTQUIST, D.; SANNES, L.; JUCKETT, D. Catalysis of Methemoglobin Reduction. Current Topics in Cellular Regulation, v. 24, n. 1, p. 287-299, 1984. HUNDING, A.; JORDAL, R.; PAULEV, P. Runner‟s anemia and iron deficiency. Acta Medica Scandinavica, v. 209, n. 1, p. 315-318, 1981. HUNTER, G. Changes in body composition, body build and performance associated with different weight training frequencies in males and females. Strength and Conditioning Journal, v. 4, n. 1, p. 26-8, 1985. HUSAIN, S.; CILLARD, J.; CILLARD, P. Hydroxil radical scavenging activity of flavonoids. Phytochemistry, v. 26, n. 9, p. 2489-2491, 1987. IHALAINEN, J. et al. Acute leukocyte, cytokine and adipocytokine responses to maximal and hypertrophic resistance exercise bouts. European Journal of Applied Physiology, v. 114, n. 12, p. 2607-2616, 2014. JACKSON, A.; POLLOCK, M. Generalized equations for predicting body density of men. British Journal of Nutrition, v. 40, n. 1, p. 497-504, 1978. JACKSON, M. Control of reactive oxygen species production in contracting skeletal muscle. Antioxidants & Redox Signaling, v.15, n. 9, p. 2477-2486, 2011. ______. Reactive oxygen species and redox-regulation of skeletal muscle adaptations to exercise. Philosophical Transactions of the Royal Society B: Biological Sciences, v. 360, n. 1464, p. 2285-2291, 2005. JENKINS, R.; GOLDFARB, A. Introduction: oxidant stress, aging and exercise. Medicine & Science in Sports & Exercise, v. 25, n. 2, p. 210-212, 1993. JUDGE, A.; DODD, S. Xanthine oxidase and activated neutrophils cause oxidative damage to skeletal muscle after contractile claudication. American Journal of Physiology-Heart and Circulatory Physiology, v. 286, n. 1, p, 252-256, 2004. KALAPOTHARAKOS, V. et al. Effects of a heavy and moderate resistance training on functional performance in older adults. The Journal of Strength & Conditioning Research, v. 19, n. 3, p. 652-657, 2005. KAPLAN, L.; PESCE, A. Clinical Chemistry: Principles, Techniques, and Correlations, Philadelphia, 1996. KAPRALOV, A.; VLASOVA, I.; FENG, W.; MAEDA, A.; WALSON, K.; TYURIN, V.; HUANG, Z.; ANEJA, R.; CARCILLO, J.; BAYIR, H.; KAGAN, V. Peroxidase Activity of hemoglobin-haptoglobin Complexes. Covalent Aggregation and Oxidative Stress in Plasma and Macrophages. The Journal of Biological Chemistry, v. 284, n. 44, p. 30395-30407, 2009. KAYSEN, G.; STEVENSON, F.; DEPNER, T. Determinants of albumin concentration in hemodialysis patients. American Journal of Kidney Diseases, v. 29, n. 5, p. 658-668, 1997. KELL, D. Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Etiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases. BMC Medical Genomics, v. 2, n. 2, p. 1-79, 2009. KHAN, K.; MONDAL, M.; PADHY, L.; MITRA, S. The role of distal histidine in peroxidase activity of myoglobin-Transient-kinetics study of the reaction of H2O2 with wild-type and distal-histidine-mutanted recombinant human myoglobin. European Journal of Biochemistry, v. 257, n. 1, p. 547-555, 1998. KINNULA, V. Focus on antioxidant enzymes and antioxidant strategies in smoking related airway disease. Thorax, v. 60, n. 1, p. 693-700, 2005. KISHIMOTO, T. The biology of interleukin-6. Bood, v. 74, n. 1, p. 1-10, 1989. KOHGO, Y.; IKUTA, K.; OHTAKE, T.; TORIMOTO, Y.; KATO, J. Boby iron metabolism and pathophysiology of iron overload. International Journal of Hematology, v. 232, n. 1, p. 323-335, 2008. KOOLMAN, J.; RÖHM, K. Bioquímica: Texto e atlas. 4. ed. Porto Alegre: Artmed, 2013. KORAK, J.; PAQUETE, M.; BROOKS, J.; FULLER, D.; COONS, J. Effect of rest-pause vs. traditional bench press training on muscle strength, electromyography, and lifting volume in randomized trial protocols. European Journal of Applied Physiology, v. 117, n. 9, p. 1891-1896, 2017. KRABBE, K.; PEDERSEN, M.; BRUUNSGAARD, H. Mini-review. Inflamatory mediators in the elderly. Experimental Gerontology, v. 39, n. 5, p. 687-699, 2004. KRAEMER, W. et al. American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Medicine & Science in Sports & Exercise, v. 34, n. 2, p. 368-380, 2002. ______; RATAMESS, N. Fundamentals of Resistance Training: Progression and Exercise Prescription. Medicine & Science in Sports & Exercise, v. 36, n. 4, p. 674-688, 2004. ______; FLECK, S. Otimizando o treinamento de força: Programas de periodização não linear. Barueri: Manole, 2009. ______; RATAMES, N. Hormonal responses and adaptations to resistance exercise and training. Sports Medicine, v. 3734, n. 1, p. 339-361, 2005. KTAN, F. INOS-mediated nitric oxide production and its regulation. Life Sciences, v. 75, n. 6, p. 639-653, 2004. KUMAR, V. et al. Patologia: bases patológicas das doenças. Rio de Janeiro: Elsevier, 2010. LAWEN, A. Is erythroferrone finally the long sought-after systemic erythroid regulator of iron? World Journal of Biological Chemistry, v. 6, n. 3, p. 78-82, 2015. LEANDRO, C.; CASTRO, R.; NASCIMENTO, E.; PITHON-CURI, T.; CURI, R. Mecanismos adaptativos do sistema imunológico em resposta ao treinamento físico. Revista Brasileira de Medicina do Esporte, v. 13, n. 5, p. 343-348, 2007. LEE, D.; ANDERSEN, J.; KAUR, D. Iron dysregulation and neurodegeneration: the molecular connection. Molecular Interventions, v. 6, n. 1, p. 89-97, 2006. LEEUWENBURGH, C. et al. Oxidized amino acids in the urine of aging rats: potential markers for assessing oxidative stress in vivo. The American Journal of Physiology, v. 276, n. 1-2, p. 128-135, 1999. LEMOS, A. et al. A hepcidina como parâmetro bioquímico na avaliação da anemia por deficiência de ferro. Revista da Associação Médica Brasileira, v. 56, n. 5, p. 596-599, 2010. LEWIS, N.; HOWATSON, G.; MORTON, K.; HILL, J.; PEDLAR, C. Alterations in redox homeostasis in the elite endurance athlete. Sports Medicine, v. 45, n. 1, p. 379-409, 2015. LIEU, P.; HEISKALA, M.; PETERSON, P.; YANG, Y. The roles of iron in health and disease. Molecular Aspects of Medicine, v. 22, n. 1, p. 1-87, 2001. LIVINGSTON, D.; BROWN, W. The chemistry of myoglobin and its reactions. Food Technology, v. 35, n. 5, p. 244-252, 1981. LOPEZ, A.; CACOUB, P.; McDOUGALL, I.; PEYRIN-BIROLET, L. Iron deficiency anaemia. The Lancet, v. 387, n. 10021, p. 907-916, 2016. LOUIS, E.; RAUE, U.; YANG, Y.; J
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Cruzeiro do Sul
Brasil
Campus Liberdade
Doutorado Interdisciplinar em Ciências da Saúde
Cruzeiro do Sul
publisher.none.fl_str_mv Universidade Cruzeiro do Sul
Brasil
Campus Liberdade
Doutorado Interdisciplinar em Ciências da Saúde
Cruzeiro do Sul
dc.source.none.fl_str_mv reponame:Repositório do Centro Universitário Braz Cubas
instname:Centro Universitário Braz Cubas (CUB)
instacron:CUB
instname_str Centro Universitário Braz Cubas (CUB)
instacron_str CUB
institution CUB
reponame_str Repositório do Centro Universitário Braz Cubas
collection Repositório do Centro Universitário Braz Cubas
repository.name.fl_str_mv Repositório do Centro Universitário Braz Cubas - Centro Universitário Braz Cubas (CUB)
repository.mail.fl_str_mv bibli@brazcubas.edu.br
_version_ 1798311342158905344