Predição da massa corporal de pintinhos por meio de modelos baseados em inteligência artificial
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Pesquisa Agropecuária Brasileira (Online) |
Texto Completo: | https://seer.sct.embrapa.br/index.php/pab/article/view/19029 |
Resumo: | The objective of this work was to develop, validate, and compare 190 artificial intelligence‑based models for predicting the body mass of chicks from 2 to 21 days of age subjected to different duration and intensities of thermal challenge. The experiment was conducted inside four climate‑controlled wind tunnels using 210 chicks. A database containing 840 datasets (from 2 to 21‑day‑old chicks) – with the variables dry‑bulb air temperature, duration of thermal stress (days), chick age (days), and the daily body mass of chicks – was used for network training, validation, and tests of models based on artificial neural networks (ANNs) and neuro‑fuzzy networks (NFNs). The ANNs were most accurate in predicting the body mass of chicks from 2 to 21 days of age after they were subjected to the input variables, and they showed an R² of 0.9993 and a standard error of 4.62 g. The ANNs enable the simulation of different scenarios, which can assist in managerial decision‑making, and they can be embedded in the heating control systems. |
id |
EMBRAPA-4_8bdf4fdaa69a7006fab3cdba4251abc2 |
---|---|
oai_identifier_str |
oai:ojs.seer.sct.embrapa.br:article/19029 |
network_acronym_str |
EMBRAPA-4 |
network_name_str |
Pesquisa Agropecuária Brasileira (Online) |
repository_id_str |
|
spelling |
Predição da massa corporal de pintinhos por meio de modelos baseados em inteligência artificialPredicting chick body mass by artificial intelligence‑based modelsbem estar animal; redes neurais artificiais; frango; modelagem; redes neurais difusas; conforto térmicoartificial neural network; broiler; modeling; neuro-fuzzy network; thermal comfortThe objective of this work was to develop, validate, and compare 190 artificial intelligence‑based models for predicting the body mass of chicks from 2 to 21 days of age subjected to different duration and intensities of thermal challenge. The experiment was conducted inside four climate‑controlled wind tunnels using 210 chicks. A database containing 840 datasets (from 2 to 21‑day‑old chicks) – with the variables dry‑bulb air temperature, duration of thermal stress (days), chick age (days), and the daily body mass of chicks – was used for network training, validation, and tests of models based on artificial neural networks (ANNs) and neuro‑fuzzy networks (NFNs). The ANNs were most accurate in predicting the body mass of chicks from 2 to 21 days of age after they were subjected to the input variables, and they showed an R² of 0.9993 and a standard error of 4.62 g. The ANNs enable the simulation of different scenarios, which can assist in managerial decision‑making, and they can be embedded in the heating control systems.O objetivo deste trabalho foi desenvolver, validar e comparar 190 modelos baseados em inteligência artificial, para predizer a massa corporal de pintinhos de 2 a 21 dias de vida, submetidos a diferentes períodos e intensidades de estresse térmico. O experimento foi realizado com 210 pintinhos, em quatro túneis de vento climatizados. Um banco de dados com 840 conjuntos de dados (de aves de 2 a 21 dias) – com as variáveis temperatura de bulbo seco do ar, duração do estresse térmico (dias), idade das aves (dias) e a massa corporal diária dos pintinhos – foi utilizado para treinamento de rede, validação e testes dos modelos baseados em redes neurais artificiais (RNA) e redes “neuro-fuzzy” (RNF). As RNA mostraram-se mais precisas para se predizer a massa corporal de pintinhos de 2 a 21 dias de idade, submetidos às variáveis de entrada, e apresentaram R² de 0,9993 e erro‑padrão de 4,62 g. As RNA propiciam a simulação de diversos cenários, que podem auxiliar na tomada de decisões em relação ao manejo, e podem ser incorporadas nos sistemas de controle de aquecimento.Pesquisa Agropecuaria BrasileiraPesquisa Agropecuária BrasileiraConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa do estado de Minas Gerais (FAPEMIG), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Ferraz, Patrícia Ferreira PoncianoYanagi Junior, TadayukiHernández Julio, Yamid FabiánCastro, Jaqueline de OliveiraGates, Richard StephenReis, Gregory MuradCampos, Alessandro Torres2014-08-15info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://seer.sct.embrapa.br/index.php/pab/article/view/19029Pesquisa Agropecuaria Brasileira; v.49, n.7, jul. 2014; 559-568Pesquisa Agropecuária Brasileira; v.49, n.7, jul. 2014; 559-5681678-39210100-104xreponame:Pesquisa Agropecuária Brasileira (Online)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPAenghttps://seer.sct.embrapa.br/index.php/pab/article/view/19029/12744https://seer.sct.embrapa.br/index.php/pab/article/downloadSuppFile/19029/11390info:eu-repo/semantics/openAccess2014-08-22T21:28:27Zoai:ojs.seer.sct.embrapa.br:article/19029Revistahttp://seer.sct.embrapa.br/index.php/pabPRIhttps://old.scielo.br/oai/scielo-oai.phppab@sct.embrapa.br || sct.pab@embrapa.br1678-39210100-204Xopendoar:2014-08-22T21:28:27Pesquisa Agropecuária Brasileira (Online) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false |
dc.title.none.fl_str_mv |
Predição da massa corporal de pintinhos por meio de modelos baseados em inteligência artificial Predicting chick body mass by artificial intelligence‑based models |
title |
Predição da massa corporal de pintinhos por meio de modelos baseados em inteligência artificial |
spellingShingle |
Predição da massa corporal de pintinhos por meio de modelos baseados em inteligência artificial Ferraz, Patrícia Ferreira Ponciano bem estar animal; redes neurais artificiais; frango; modelagem; redes neurais difusas; conforto térmico artificial neural network; broiler; modeling; neuro-fuzzy network; thermal comfort |
title_short |
Predição da massa corporal de pintinhos por meio de modelos baseados em inteligência artificial |
title_full |
Predição da massa corporal de pintinhos por meio de modelos baseados em inteligência artificial |
title_fullStr |
Predição da massa corporal de pintinhos por meio de modelos baseados em inteligência artificial |
title_full_unstemmed |
Predição da massa corporal de pintinhos por meio de modelos baseados em inteligência artificial |
title_sort |
Predição da massa corporal de pintinhos por meio de modelos baseados em inteligência artificial |
author |
Ferraz, Patrícia Ferreira Ponciano |
author_facet |
Ferraz, Patrícia Ferreira Ponciano Yanagi Junior, Tadayuki Hernández Julio, Yamid Fabián Castro, Jaqueline de Oliveira Gates, Richard Stephen Reis, Gregory Murad Campos, Alessandro Torres |
author_role |
author |
author2 |
Yanagi Junior, Tadayuki Hernández Julio, Yamid Fabián Castro, Jaqueline de Oliveira Gates, Richard Stephen Reis, Gregory Murad Campos, Alessandro Torres |
author2_role |
author author author author author author |
dc.contributor.none.fl_str_mv |
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa do estado de Minas Gerais (FAPEMIG), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) |
dc.contributor.author.fl_str_mv |
Ferraz, Patrícia Ferreira Ponciano Yanagi Junior, Tadayuki Hernández Julio, Yamid Fabián Castro, Jaqueline de Oliveira Gates, Richard Stephen Reis, Gregory Murad Campos, Alessandro Torres |
dc.subject.por.fl_str_mv |
bem estar animal; redes neurais artificiais; frango; modelagem; redes neurais difusas; conforto térmico artificial neural network; broiler; modeling; neuro-fuzzy network; thermal comfort |
topic |
bem estar animal; redes neurais artificiais; frango; modelagem; redes neurais difusas; conforto térmico artificial neural network; broiler; modeling; neuro-fuzzy network; thermal comfort |
description |
The objective of this work was to develop, validate, and compare 190 artificial intelligence‑based models for predicting the body mass of chicks from 2 to 21 days of age subjected to different duration and intensities of thermal challenge. The experiment was conducted inside four climate‑controlled wind tunnels using 210 chicks. A database containing 840 datasets (from 2 to 21‑day‑old chicks) – with the variables dry‑bulb air temperature, duration of thermal stress (days), chick age (days), and the daily body mass of chicks – was used for network training, validation, and tests of models based on artificial neural networks (ANNs) and neuro‑fuzzy networks (NFNs). The ANNs were most accurate in predicting the body mass of chicks from 2 to 21 days of age after they were subjected to the input variables, and they showed an R² of 0.9993 and a standard error of 4.62 g. The ANNs enable the simulation of different scenarios, which can assist in managerial decision‑making, and they can be embedded in the heating control systems. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-08-15 |
dc.type.none.fl_str_mv |
|
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://seer.sct.embrapa.br/index.php/pab/article/view/19029 |
url |
https://seer.sct.embrapa.br/index.php/pab/article/view/19029 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://seer.sct.embrapa.br/index.php/pab/article/view/19029/12744 https://seer.sct.embrapa.br/index.php/pab/article/downloadSuppFile/19029/11390 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Pesquisa Agropecuaria Brasileira Pesquisa Agropecuária Brasileira |
publisher.none.fl_str_mv |
Pesquisa Agropecuaria Brasileira Pesquisa Agropecuária Brasileira |
dc.source.none.fl_str_mv |
Pesquisa Agropecuaria Brasileira; v.49, n.7, jul. 2014; 559-568 Pesquisa Agropecuária Brasileira; v.49, n.7, jul. 2014; 559-568 1678-3921 0100-104x reponame:Pesquisa Agropecuária Brasileira (Online) instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa) instacron:EMBRAPA |
instname_str |
Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
instacron_str |
EMBRAPA |
institution |
EMBRAPA |
reponame_str |
Pesquisa Agropecuária Brasileira (Online) |
collection |
Pesquisa Agropecuária Brasileira (Online) |
repository.name.fl_str_mv |
Pesquisa Agropecuária Brasileira (Online) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
repository.mail.fl_str_mv |
pab@sct.embrapa.br || sct.pab@embrapa.br |
_version_ |
1793416668886597632 |