Predicting chick body mass by artificial intelligence‑based models

Detalhes bibliográficos
Autor(a) principal: Ferraz, Patricia Ferreira Ponciano
Data de Publicação: 2014
Outros Autores: Yanagi Junior, Tadayuki, Hernández Julio, Yamid Fabián, Castro, Jaqueline de Oliveira, Gates, Richard Stephen, Reis, Gregory Murad, Campos, Alessandro Torres
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFLA
Texto Completo: http://repositorio.ufla.br/jspui/handle/1/11627
Resumo: The objective of this work was to develop, validate, and compare 190 artificial intelligence‑based models for predicting the body mass of chicks from 2 to 21 days of age subjected to different duration and intensities of thermal challenge. The experiment was conducted inside four climate‑controlled wind tunnels using 210  chicks. A  database containing 840 datasets (from 2 to 21‑day‑old chicks) – with the variables dry‑bulb air temperature, duration of thermal stress (days), chick age (days), and the daily body mass of chicks – was used for network training, validation, and tests of models based on artificial neural networks (ANNs) and neuro‑fuzzy networks (NFNs). The ANNs were most accurate in predicting the body mass of chicks from 2 to 21 days of age after they were subjected to the input variables, and they showed an R² of 0.9993 and a standard error of 4.62 g. The ANNs enable the simulation of different scenarios, which can assist in managerial decision‑making, and they can be embedded in the heating control systems.
id UFLA_3f893a6dfa3c06e5970a0d6de171efc2
oai_identifier_str oai:localhost:1/11627
network_acronym_str UFLA
network_name_str Repositório Institucional da UFLA
repository_id_str
spelling Predicting chick body mass by artificial intelligence‑based modelsPredição da massa corporal de pintinhos por meio de modelos baseados em inteligência artificialAnimal welfareArtificial neural networkBroilerModelingNeuro‑fuzzy networkThermal comfortBem estar animalRedes neurais artificiaisFrangoModelagemRedes neurais difusasConforto térmicoThe objective of this work was to develop, validate, and compare 190 artificial intelligence‑based models for predicting the body mass of chicks from 2 to 21 days of age subjected to different duration and intensities of thermal challenge. The experiment was conducted inside four climate‑controlled wind tunnels using 210  chicks. A  database containing 840 datasets (from 2 to 21‑day‑old chicks) – with the variables dry‑bulb air temperature, duration of thermal stress (days), chick age (days), and the daily body mass of chicks – was used for network training, validation, and tests of models based on artificial neural networks (ANNs) and neuro‑fuzzy networks (NFNs). The ANNs were most accurate in predicting the body mass of chicks from 2 to 21 days of age after they were subjected to the input variables, and they showed an R² of 0.9993 and a standard error of 4.62 g. The ANNs enable the simulation of different scenarios, which can assist in managerial decision‑making, and they can be embedded in the heating control systems. O objetivo deste trabalho foi desenvolver, validar e comparar 190 modelos baseados em inteligência artificial, para predizer a massa corporal de pintinhos de 2 a 21 dias de vida, submetidos a diferentes períodos e intensidades de estresse térmico. O experimento foi realizado com 210 pintinhos, em quatro túneis de vento climatizados. Um banco de dados com 840 conjuntos de dados (de aves de 2 a 21 dias) – com as variáveis temperatura de bulbo seco do ar, duração do estresse térmico (dias), idade das aves (dias) e a massa corporal diária dos pintinhos – foi utilizado para treinamento de rede, validação e testes dos modelos baseados em redes neurais artificiais (RNA) e redes “neuro-fuzzy” (RNF). As RNA mostraram-se mais precisas para se predizer a massa corporal de pintinhos de 2 a 21 dias de idade, submetidos às variáveis de entrada, e apresentaram R² de 0,9993 e erro‑padrão de 4,62 g. As RNA propiciam a simulação de diversos cenários, que podem auxiliar na tomada de decisões em relação ao manejo, e podem ser incorporadas nos sistemas de controle de aquecimento.Embrapa Informação Tecnológica2016-08-16T15:04:14Z2016-08-16T15:04:14Z2014-07info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfFERRAZ, P. F. P. et al. Predicting chick body mass by artificial intelligence-based models. Pesquisa Agropecuária Brasileira, Brasília, v. 49, n. 7, p. 559-568, jul. 2014.http://repositorio.ufla.br/jspui/handle/1/11627Pesquisa Agropecuária Brasileirareponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLAFerraz, Patricia Ferreira PoncianoYanagi Junior, TadayukiHernández Julio, Yamid FabiánCastro, Jaqueline de OliveiraGates, Richard StephenReis, Gregory MuradCampos, Alessandro Torresinfo:eu-repo/semantics/openAccesseng2023-05-26T19:37:29Zoai:localhost:1/11627Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2023-05-26T19:37:29Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false
dc.title.none.fl_str_mv Predicting chick body mass by artificial intelligence‑based models
Predição da massa corporal de pintinhos por meio de modelos baseados em inteligência artificial
title Predicting chick body mass by artificial intelligence‑based models
spellingShingle Predicting chick body mass by artificial intelligence‑based models
Ferraz, Patricia Ferreira Ponciano
Animal welfare
Artificial neural network
Broiler
Modeling
Neuro‑fuzzy network
Thermal comfort
Bem estar animal
Redes neurais artificiais
Frango
Modelagem
Redes neurais difusas
Conforto térmico
title_short Predicting chick body mass by artificial intelligence‑based models
title_full Predicting chick body mass by artificial intelligence‑based models
title_fullStr Predicting chick body mass by artificial intelligence‑based models
title_full_unstemmed Predicting chick body mass by artificial intelligence‑based models
title_sort Predicting chick body mass by artificial intelligence‑based models
author Ferraz, Patricia Ferreira Ponciano
author_facet Ferraz, Patricia Ferreira Ponciano
Yanagi Junior, Tadayuki
Hernández Julio, Yamid Fabián
Castro, Jaqueline de Oliveira
Gates, Richard Stephen
Reis, Gregory Murad
Campos, Alessandro Torres
author_role author
author2 Yanagi Junior, Tadayuki
Hernández Julio, Yamid Fabián
Castro, Jaqueline de Oliveira
Gates, Richard Stephen
Reis, Gregory Murad
Campos, Alessandro Torres
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv Ferraz, Patricia Ferreira Ponciano
Yanagi Junior, Tadayuki
Hernández Julio, Yamid Fabián
Castro, Jaqueline de Oliveira
Gates, Richard Stephen
Reis, Gregory Murad
Campos, Alessandro Torres
dc.subject.por.fl_str_mv Animal welfare
Artificial neural network
Broiler
Modeling
Neuro‑fuzzy network
Thermal comfort
Bem estar animal
Redes neurais artificiais
Frango
Modelagem
Redes neurais difusas
Conforto térmico
topic Animal welfare
Artificial neural network
Broiler
Modeling
Neuro‑fuzzy network
Thermal comfort
Bem estar animal
Redes neurais artificiais
Frango
Modelagem
Redes neurais difusas
Conforto térmico
description The objective of this work was to develop, validate, and compare 190 artificial intelligence‑based models for predicting the body mass of chicks from 2 to 21 days of age subjected to different duration and intensities of thermal challenge. The experiment was conducted inside four climate‑controlled wind tunnels using 210  chicks. A  database containing 840 datasets (from 2 to 21‑day‑old chicks) – with the variables dry‑bulb air temperature, duration of thermal stress (days), chick age (days), and the daily body mass of chicks – was used for network training, validation, and tests of models based on artificial neural networks (ANNs) and neuro‑fuzzy networks (NFNs). The ANNs were most accurate in predicting the body mass of chicks from 2 to 21 days of age after they were subjected to the input variables, and they showed an R² of 0.9993 and a standard error of 4.62 g. The ANNs enable the simulation of different scenarios, which can assist in managerial decision‑making, and they can be embedded in the heating control systems.
publishDate 2014
dc.date.none.fl_str_mv 2014-07
2016-08-16T15:04:14Z
2016-08-16T15:04:14Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv FERRAZ, P. F. P. et al. Predicting chick body mass by artificial intelligence-based models. Pesquisa Agropecuária Brasileira, Brasília, v. 49, n. 7, p. 559-568, jul. 2014.
http://repositorio.ufla.br/jspui/handle/1/11627
identifier_str_mv FERRAZ, P. F. P. et al. Predicting chick body mass by artificial intelligence-based models. Pesquisa Agropecuária Brasileira, Brasília, v. 49, n. 7, p. 559-568, jul. 2014.
url http://repositorio.ufla.br/jspui/handle/1/11627
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Embrapa Informação Tecnológica
publisher.none.fl_str_mv Embrapa Informação Tecnológica
dc.source.none.fl_str_mv Pesquisa Agropecuária Brasileira
reponame:Repositório Institucional da UFLA
instname:Universidade Federal de Lavras (UFLA)
instacron:UFLA
instname_str Universidade Federal de Lavras (UFLA)
instacron_str UFLA
institution UFLA
reponame_str Repositório Institucional da UFLA
collection Repositório Institucional da UFLA
repository.name.fl_str_mv Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)
repository.mail.fl_str_mv nivaldo@ufla.br || repositorio.biblioteca@ufla.br
_version_ 1815439354704691200