Predicting chick body mass by artificial intelligence‑based models
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFLA |
Texto Completo: | http://repositorio.ufla.br/jspui/handle/1/11627 |
Resumo: | The objective of this work was to develop, validate, and compare 190 artificial intelligence‑based models for predicting the body mass of chicks from 2 to 21 days of age subjected to different duration and intensities of thermal challenge. The experiment was conducted inside four climate‑controlled wind tunnels using 210 chicks. A database containing 840 datasets (from 2 to 21‑day‑old chicks) – with the variables dry‑bulb air temperature, duration of thermal stress (days), chick age (days), and the daily body mass of chicks – was used for network training, validation, and tests of models based on artificial neural networks (ANNs) and neuro‑fuzzy networks (NFNs). The ANNs were most accurate in predicting the body mass of chicks from 2 to 21 days of age after they were subjected to the input variables, and they showed an R² of 0.9993 and a standard error of 4.62 g. The ANNs enable the simulation of different scenarios, which can assist in managerial decision‑making, and they can be embedded in the heating control systems. |
id |
UFLA_3f893a6dfa3c06e5970a0d6de171efc2 |
---|---|
oai_identifier_str |
oai:localhost:1/11627 |
network_acronym_str |
UFLA |
network_name_str |
Repositório Institucional da UFLA |
repository_id_str |
|
spelling |
Predicting chick body mass by artificial intelligence‑based modelsPredição da massa corporal de pintinhos por meio de modelos baseados em inteligência artificialAnimal welfareArtificial neural networkBroilerModelingNeuro‑fuzzy networkThermal comfortBem estar animalRedes neurais artificiaisFrangoModelagemRedes neurais difusasConforto térmicoThe objective of this work was to develop, validate, and compare 190 artificial intelligence‑based models for predicting the body mass of chicks from 2 to 21 days of age subjected to different duration and intensities of thermal challenge. The experiment was conducted inside four climate‑controlled wind tunnels using 210 chicks. A database containing 840 datasets (from 2 to 21‑day‑old chicks) – with the variables dry‑bulb air temperature, duration of thermal stress (days), chick age (days), and the daily body mass of chicks – was used for network training, validation, and tests of models based on artificial neural networks (ANNs) and neuro‑fuzzy networks (NFNs). The ANNs were most accurate in predicting the body mass of chicks from 2 to 21 days of age after they were subjected to the input variables, and they showed an R² of 0.9993 and a standard error of 4.62 g. The ANNs enable the simulation of different scenarios, which can assist in managerial decision‑making, and they can be embedded in the heating control systems. O objetivo deste trabalho foi desenvolver, validar e comparar 190 modelos baseados em inteligência artificial, para predizer a massa corporal de pintinhos de 2 a 21 dias de vida, submetidos a diferentes períodos e intensidades de estresse térmico. O experimento foi realizado com 210 pintinhos, em quatro túneis de vento climatizados. Um banco de dados com 840 conjuntos de dados (de aves de 2 a 21 dias) – com as variáveis temperatura de bulbo seco do ar, duração do estresse térmico (dias), idade das aves (dias) e a massa corporal diária dos pintinhos – foi utilizado para treinamento de rede, validação e testes dos modelos baseados em redes neurais artificiais (RNA) e redes “neuro-fuzzy” (RNF). As RNA mostraram-se mais precisas para se predizer a massa corporal de pintinhos de 2 a 21 dias de idade, submetidos às variáveis de entrada, e apresentaram R² de 0,9993 e erro‑padrão de 4,62 g. As RNA propiciam a simulação de diversos cenários, que podem auxiliar na tomada de decisões em relação ao manejo, e podem ser incorporadas nos sistemas de controle de aquecimento.Embrapa Informação Tecnológica2016-08-16T15:04:14Z2016-08-16T15:04:14Z2014-07info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfFERRAZ, P. F. P. et al. Predicting chick body mass by artificial intelligence-based models. Pesquisa Agropecuária Brasileira, Brasília, v. 49, n. 7, p. 559-568, jul. 2014.http://repositorio.ufla.br/jspui/handle/1/11627Pesquisa Agropecuária Brasileirareponame:Repositório Institucional da UFLAinstname:Universidade Federal de Lavras (UFLA)instacron:UFLAFerraz, Patricia Ferreira PoncianoYanagi Junior, TadayukiHernández Julio, Yamid FabiánCastro, Jaqueline de OliveiraGates, Richard StephenReis, Gregory MuradCampos, Alessandro Torresinfo:eu-repo/semantics/openAccesseng2023-05-26T19:37:29Zoai:localhost:1/11627Repositório InstitucionalPUBhttp://repositorio.ufla.br/oai/requestnivaldo@ufla.br || repositorio.biblioteca@ufla.bropendoar:2023-05-26T19:37:29Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA)false |
dc.title.none.fl_str_mv |
Predicting chick body mass by artificial intelligence‑based models Predição da massa corporal de pintinhos por meio de modelos baseados em inteligência artificial |
title |
Predicting chick body mass by artificial intelligence‑based models |
spellingShingle |
Predicting chick body mass by artificial intelligence‑based models Ferraz, Patricia Ferreira Ponciano Animal welfare Artificial neural network Broiler Modeling Neuro‑fuzzy network Thermal comfort Bem estar animal Redes neurais artificiais Frango Modelagem Redes neurais difusas Conforto térmico |
title_short |
Predicting chick body mass by artificial intelligence‑based models |
title_full |
Predicting chick body mass by artificial intelligence‑based models |
title_fullStr |
Predicting chick body mass by artificial intelligence‑based models |
title_full_unstemmed |
Predicting chick body mass by artificial intelligence‑based models |
title_sort |
Predicting chick body mass by artificial intelligence‑based models |
author |
Ferraz, Patricia Ferreira Ponciano |
author_facet |
Ferraz, Patricia Ferreira Ponciano Yanagi Junior, Tadayuki Hernández Julio, Yamid Fabián Castro, Jaqueline de Oliveira Gates, Richard Stephen Reis, Gregory Murad Campos, Alessandro Torres |
author_role |
author |
author2 |
Yanagi Junior, Tadayuki Hernández Julio, Yamid Fabián Castro, Jaqueline de Oliveira Gates, Richard Stephen Reis, Gregory Murad Campos, Alessandro Torres |
author2_role |
author author author author author author |
dc.contributor.author.fl_str_mv |
Ferraz, Patricia Ferreira Ponciano Yanagi Junior, Tadayuki Hernández Julio, Yamid Fabián Castro, Jaqueline de Oliveira Gates, Richard Stephen Reis, Gregory Murad Campos, Alessandro Torres |
dc.subject.por.fl_str_mv |
Animal welfare Artificial neural network Broiler Modeling Neuro‑fuzzy network Thermal comfort Bem estar animal Redes neurais artificiais Frango Modelagem Redes neurais difusas Conforto térmico |
topic |
Animal welfare Artificial neural network Broiler Modeling Neuro‑fuzzy network Thermal comfort Bem estar animal Redes neurais artificiais Frango Modelagem Redes neurais difusas Conforto térmico |
description |
The objective of this work was to develop, validate, and compare 190 artificial intelligence‑based models for predicting the body mass of chicks from 2 to 21 days of age subjected to different duration and intensities of thermal challenge. The experiment was conducted inside four climate‑controlled wind tunnels using 210 chicks. A database containing 840 datasets (from 2 to 21‑day‑old chicks) – with the variables dry‑bulb air temperature, duration of thermal stress (days), chick age (days), and the daily body mass of chicks – was used for network training, validation, and tests of models based on artificial neural networks (ANNs) and neuro‑fuzzy networks (NFNs). The ANNs were most accurate in predicting the body mass of chicks from 2 to 21 days of age after they were subjected to the input variables, and they showed an R² of 0.9993 and a standard error of 4.62 g. The ANNs enable the simulation of different scenarios, which can assist in managerial decision‑making, and they can be embedded in the heating control systems. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-07 2016-08-16T15:04:14Z 2016-08-16T15:04:14Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
FERRAZ, P. F. P. et al. Predicting chick body mass by artificial intelligence-based models. Pesquisa Agropecuária Brasileira, Brasília, v. 49, n. 7, p. 559-568, jul. 2014. http://repositorio.ufla.br/jspui/handle/1/11627 |
identifier_str_mv |
FERRAZ, P. F. P. et al. Predicting chick body mass by artificial intelligence-based models. Pesquisa Agropecuária Brasileira, Brasília, v. 49, n. 7, p. 559-568, jul. 2014. |
url |
http://repositorio.ufla.br/jspui/handle/1/11627 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Embrapa Informação Tecnológica |
publisher.none.fl_str_mv |
Embrapa Informação Tecnológica |
dc.source.none.fl_str_mv |
Pesquisa Agropecuária Brasileira reponame:Repositório Institucional da UFLA instname:Universidade Federal de Lavras (UFLA) instacron:UFLA |
instname_str |
Universidade Federal de Lavras (UFLA) |
instacron_str |
UFLA |
institution |
UFLA |
reponame_str |
Repositório Institucional da UFLA |
collection |
Repositório Institucional da UFLA |
repository.name.fl_str_mv |
Repositório Institucional da UFLA - Universidade Federal de Lavras (UFLA) |
repository.mail.fl_str_mv |
nivaldo@ufla.br || repositorio.biblioteca@ufla.br |
_version_ |
1815439354704691200 |