Soybean crop area estimation through image classification normalized by the error matrix

Detalhes bibliográficos
Autor(a) principal: Antunes, João Francisco Gonçalves
Data de Publicação: 2012
Outros Autores: Mercante, Erivelto, Esquerdo, Júlio César Dalla Mora, Lamparelli, Rubens Augusto de Camargo, Rocha, Jansle Vieira
Tipo de documento: Artigo
Idioma: por
Título da fonte: Pesquisa Agropecuária Brasileira (Online)
Texto Completo: https://seer.sct.embrapa.br/index.php/pab/article/view/11148
Resumo: The objective of this work was to estimate soybean crop area by the normalization of the error matrix generated from the supervised classification of TM/Landsat‑5 images. Eight municipalities of the state of Paraná, Brazil, were evaluated using data from the 2003/2004 crop season. Classifications were carried out using the parallelepiped and maximum likelihood methods, resulting in a “soybean mask”. Kappa index values for the eight municipalities were above 0.6. Estimated soybean areas, corrected by the error matrix, were highly correlated with official estimates of the state and with estimates generated from an alternative method called “direct expansion”. Soybean crop area estimation by the normalization of the error matrix is less costly and can aid conventional methods in estimating harvests in a less subjective manner.
id EMBRAPA-4_cd3b5cbd1596caca1bdabed110a7cd3c
oai_identifier_str oai:ojs.seer.sct.embrapa.br:article/11148
network_acronym_str EMBRAPA-4
network_name_str Pesquisa Agropecuária Brasileira (Online)
repository_id_str
spelling Soybean crop area estimation through image classification normalized by the error matrixEstimativa de área de soja por classificação de imagens normalizada pela matriz de errosGlycine max; soybean crop; geotechnology; Kappa index; crop forecasting; TM/Landsat‑5.Glycine max; cultura da soja; geotecnologia; índice Kappa; previsão de safras; TM/Landsat‑5.The objective of this work was to estimate soybean crop area by the normalization of the error matrix generated from the supervised classification of TM/Landsat‑5 images. Eight municipalities of the state of Paraná, Brazil, were evaluated using data from the 2003/2004 crop season. Classifications were carried out using the parallelepiped and maximum likelihood methods, resulting in a “soybean mask”. Kappa index values for the eight municipalities were above 0.6. Estimated soybean areas, corrected by the error matrix, were highly correlated with official estimates of the state and with estimates generated from an alternative method called “direct expansion”. Soybean crop area estimation by the normalization of the error matrix is less costly and can aid conventional methods in estimating harvests in a less subjective manner.O objetivo deste trabalho foi estimar a área plantada com soja por meio da normalização da matriz de erros gerada a partir da classificação supervisionada de imagens TM/Landsat‑5. Foram avaliados oito municípios no Estado do Paraná, com dados referentes à safra de 2003/2004. As classificações foram realizadas por meio dos métodos paralelepípedo e máxima verossimilhança, dando origem à “máscara de soja”. Os valores do índice Kappa dos oito municípios ficaram acima de 0,6. As estimativas de área de soja, corrigidas por matriz de erros, apresentaram alta correlação com as estimativas oficiais do estado e com as estimativas geradas a partir de um método alternativo denominado “expansão direta”. A estimativa de área de soja por meio da normalização da matriz de erros apresenta menor custo e pode subsidiar métodos convencionais na estimativa menos subjetiva de safras.Pesquisa Agropecuaria BrasileiraPesquisa Agropecuária BrasileiraAntunes, João Francisco GonçalvesMercante, EriveltoEsquerdo, Júlio César Dalla MoraLamparelli, Rubens Augusto de CamargoRocha, Jansle Vieira2012-11-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://seer.sct.embrapa.br/index.php/pab/article/view/11148Pesquisa Agropecuaria Brasileira; v.47, n.9, set. 2012: Número Temático Geotecnologias; 1288-1294Pesquisa Agropecuária Brasileira; v.47, n.9, set. 2012: Número Temático Geotecnologias; 1288-12941678-39210100-104xreponame:Pesquisa Agropecuária Brasileira (Online)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPAporhttps://seer.sct.embrapa.br/index.php/pab/article/view/11148/7991https://seer.sct.embrapa.br/index.php/pab/article/downloadSuppFile/11148/6603info:eu-repo/semantics/openAccess2012-11-13T21:40:09Zoai:ojs.seer.sct.embrapa.br:article/11148Revistahttp://seer.sct.embrapa.br/index.php/pabPRIhttps://old.scielo.br/oai/scielo-oai.phppab@sct.embrapa.br || sct.pab@embrapa.br1678-39210100-204Xopendoar:2012-11-13T21:40:09Pesquisa Agropecuária Brasileira (Online) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv Soybean crop area estimation through image classification normalized by the error matrix
Estimativa de área de soja por classificação de imagens normalizada pela matriz de erros
title Soybean crop area estimation through image classification normalized by the error matrix
spellingShingle Soybean crop area estimation through image classification normalized by the error matrix
Antunes, João Francisco Gonçalves
Glycine max; soybean crop; geotechnology; Kappa index; crop forecasting; TM/Landsat‑5.
Glycine max; cultura da soja; geotecnologia; índice Kappa; previsão de safras; TM/Landsat‑5.
title_short Soybean crop area estimation through image classification normalized by the error matrix
title_full Soybean crop area estimation through image classification normalized by the error matrix
title_fullStr Soybean crop area estimation through image classification normalized by the error matrix
title_full_unstemmed Soybean crop area estimation through image classification normalized by the error matrix
title_sort Soybean crop area estimation through image classification normalized by the error matrix
author Antunes, João Francisco Gonçalves
author_facet Antunes, João Francisco Gonçalves
Mercante, Erivelto
Esquerdo, Júlio César Dalla Mora
Lamparelli, Rubens Augusto de Camargo
Rocha, Jansle Vieira
author_role author
author2 Mercante, Erivelto
Esquerdo, Júlio César Dalla Mora
Lamparelli, Rubens Augusto de Camargo
Rocha, Jansle Vieira
author2_role author
author
author
author
dc.contributor.none.fl_str_mv

dc.contributor.author.fl_str_mv Antunes, João Francisco Gonçalves
Mercante, Erivelto
Esquerdo, Júlio César Dalla Mora
Lamparelli, Rubens Augusto de Camargo
Rocha, Jansle Vieira
dc.subject.por.fl_str_mv Glycine max; soybean crop; geotechnology; Kappa index; crop forecasting; TM/Landsat‑5.
Glycine max; cultura da soja; geotecnologia; índice Kappa; previsão de safras; TM/Landsat‑5.
topic Glycine max; soybean crop; geotechnology; Kappa index; crop forecasting; TM/Landsat‑5.
Glycine max; cultura da soja; geotecnologia; índice Kappa; previsão de safras; TM/Landsat‑5.
description The objective of this work was to estimate soybean crop area by the normalization of the error matrix generated from the supervised classification of TM/Landsat‑5 images. Eight municipalities of the state of Paraná, Brazil, were evaluated using data from the 2003/2004 crop season. Classifications were carried out using the parallelepiped and maximum likelihood methods, resulting in a “soybean mask”. Kappa index values for the eight municipalities were above 0.6. Estimated soybean areas, corrected by the error matrix, were highly correlated with official estimates of the state and with estimates generated from an alternative method called “direct expansion”. Soybean crop area estimation by the normalization of the error matrix is less costly and can aid conventional methods in estimating harvests in a less subjective manner.
publishDate 2012
dc.date.none.fl_str_mv 2012-11-09
dc.type.none.fl_str_mv
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://seer.sct.embrapa.br/index.php/pab/article/view/11148
url https://seer.sct.embrapa.br/index.php/pab/article/view/11148
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://seer.sct.embrapa.br/index.php/pab/article/view/11148/7991
https://seer.sct.embrapa.br/index.php/pab/article/downloadSuppFile/11148/6603
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Pesquisa Agropecuaria Brasileira
Pesquisa Agropecuária Brasileira
publisher.none.fl_str_mv Pesquisa Agropecuaria Brasileira
Pesquisa Agropecuária Brasileira
dc.source.none.fl_str_mv Pesquisa Agropecuaria Brasileira; v.47, n.9, set. 2012: Número Temático Geotecnologias; 1288-1294
Pesquisa Agropecuária Brasileira; v.47, n.9, set. 2012: Número Temático Geotecnologias; 1288-1294
1678-3921
0100-104x
reponame:Pesquisa Agropecuária Brasileira (Online)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Pesquisa Agropecuária Brasileira (Online)
collection Pesquisa Agropecuária Brasileira (Online)
repository.name.fl_str_mv Pesquisa Agropecuária Brasileira (Online) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv pab@sct.embrapa.br || sct.pab@embrapa.br
_version_ 1793416662984163328