Soybean crop area estimation through image classification normalized by the error matrix
Autor(a) principal: | |
---|---|
Data de Publicação: | 2012 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Pesquisa Agropecuária Brasileira (Online) |
Texto Completo: | https://seer.sct.embrapa.br/index.php/pab/article/view/11148 |
Resumo: | The objective of this work was to estimate soybean crop area by the normalization of the error matrix generated from the supervised classification of TM/Landsat‑5 images. Eight municipalities of the state of Paraná, Brazil, were evaluated using data from the 2003/2004 crop season. Classifications were carried out using the parallelepiped and maximum likelihood methods, resulting in a “soybean mask”. Kappa index values for the eight municipalities were above 0.6. Estimated soybean areas, corrected by the error matrix, were highly correlated with official estimates of the state and with estimates generated from an alternative method called “direct expansion”. Soybean crop area estimation by the normalization of the error matrix is less costly and can aid conventional methods in estimating harvests in a less subjective manner. |
id |
EMBRAPA-4_cd3b5cbd1596caca1bdabed110a7cd3c |
---|---|
oai_identifier_str |
oai:ojs.seer.sct.embrapa.br:article/11148 |
network_acronym_str |
EMBRAPA-4 |
network_name_str |
Pesquisa Agropecuária Brasileira (Online) |
repository_id_str |
|
spelling |
Soybean crop area estimation through image classification normalized by the error matrixEstimativa de área de soja por classificação de imagens normalizada pela matriz de errosGlycine max; soybean crop; geotechnology; Kappa index; crop forecasting; TM/Landsat‑5.Glycine max; cultura da soja; geotecnologia; índice Kappa; previsão de safras; TM/Landsat‑5.The objective of this work was to estimate soybean crop area by the normalization of the error matrix generated from the supervised classification of TM/Landsat‑5 images. Eight municipalities of the state of Paraná, Brazil, were evaluated using data from the 2003/2004 crop season. Classifications were carried out using the parallelepiped and maximum likelihood methods, resulting in a “soybean mask”. Kappa index values for the eight municipalities were above 0.6. Estimated soybean areas, corrected by the error matrix, were highly correlated with official estimates of the state and with estimates generated from an alternative method called “direct expansion”. Soybean crop area estimation by the normalization of the error matrix is less costly and can aid conventional methods in estimating harvests in a less subjective manner.O objetivo deste trabalho foi estimar a área plantada com soja por meio da normalização da matriz de erros gerada a partir da classificação supervisionada de imagens TM/Landsat‑5. Foram avaliados oito municípios no Estado do Paraná, com dados referentes à safra de 2003/2004. As classificações foram realizadas por meio dos métodos paralelepípedo e máxima verossimilhança, dando origem à “máscara de soja”. Os valores do índice Kappa dos oito municípios ficaram acima de 0,6. As estimativas de área de soja, corrigidas por matriz de erros, apresentaram alta correlação com as estimativas oficiais do estado e com as estimativas geradas a partir de um método alternativo denominado “expansão direta”. A estimativa de área de soja por meio da normalização da matriz de erros apresenta menor custo e pode subsidiar métodos convencionais na estimativa menos subjetiva de safras.Pesquisa Agropecuaria BrasileiraPesquisa Agropecuária BrasileiraAntunes, João Francisco GonçalvesMercante, EriveltoEsquerdo, Júlio César Dalla MoraLamparelli, Rubens Augusto de CamargoRocha, Jansle Vieira2012-11-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://seer.sct.embrapa.br/index.php/pab/article/view/11148Pesquisa Agropecuaria Brasileira; v.47, n.9, set. 2012: Número Temático Geotecnologias; 1288-1294Pesquisa Agropecuária Brasileira; v.47, n.9, set. 2012: Número Temático Geotecnologias; 1288-12941678-39210100-104xreponame:Pesquisa Agropecuária Brasileira (Online)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPAporhttps://seer.sct.embrapa.br/index.php/pab/article/view/11148/7991https://seer.sct.embrapa.br/index.php/pab/article/downloadSuppFile/11148/6603info:eu-repo/semantics/openAccess2012-11-13T21:40:09Zoai:ojs.seer.sct.embrapa.br:article/11148Revistahttp://seer.sct.embrapa.br/index.php/pabPRIhttps://old.scielo.br/oai/scielo-oai.phppab@sct.embrapa.br || sct.pab@embrapa.br1678-39210100-204Xopendoar:2012-11-13T21:40:09Pesquisa Agropecuária Brasileira (Online) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false |
dc.title.none.fl_str_mv |
Soybean crop area estimation through image classification normalized by the error matrix Estimativa de área de soja por classificação de imagens normalizada pela matriz de erros |
title |
Soybean crop area estimation through image classification normalized by the error matrix |
spellingShingle |
Soybean crop area estimation through image classification normalized by the error matrix Antunes, João Francisco Gonçalves Glycine max; soybean crop; geotechnology; Kappa index; crop forecasting; TM/Landsat‑5. Glycine max; cultura da soja; geotecnologia; índice Kappa; previsão de safras; TM/Landsat‑5. |
title_short |
Soybean crop area estimation through image classification normalized by the error matrix |
title_full |
Soybean crop area estimation through image classification normalized by the error matrix |
title_fullStr |
Soybean crop area estimation through image classification normalized by the error matrix |
title_full_unstemmed |
Soybean crop area estimation through image classification normalized by the error matrix |
title_sort |
Soybean crop area estimation through image classification normalized by the error matrix |
author |
Antunes, João Francisco Gonçalves |
author_facet |
Antunes, João Francisco Gonçalves Mercante, Erivelto Esquerdo, Júlio César Dalla Mora Lamparelli, Rubens Augusto de Camargo Rocha, Jansle Vieira |
author_role |
author |
author2 |
Mercante, Erivelto Esquerdo, Júlio César Dalla Mora Lamparelli, Rubens Augusto de Camargo Rocha, Jansle Vieira |
author2_role |
author author author author |
dc.contributor.none.fl_str_mv |
|
dc.contributor.author.fl_str_mv |
Antunes, João Francisco Gonçalves Mercante, Erivelto Esquerdo, Júlio César Dalla Mora Lamparelli, Rubens Augusto de Camargo Rocha, Jansle Vieira |
dc.subject.por.fl_str_mv |
Glycine max; soybean crop; geotechnology; Kappa index; crop forecasting; TM/Landsat‑5. Glycine max; cultura da soja; geotecnologia; índice Kappa; previsão de safras; TM/Landsat‑5. |
topic |
Glycine max; soybean crop; geotechnology; Kappa index; crop forecasting; TM/Landsat‑5. Glycine max; cultura da soja; geotecnologia; índice Kappa; previsão de safras; TM/Landsat‑5. |
description |
The objective of this work was to estimate soybean crop area by the normalization of the error matrix generated from the supervised classification of TM/Landsat‑5 images. Eight municipalities of the state of Paraná, Brazil, were evaluated using data from the 2003/2004 crop season. Classifications were carried out using the parallelepiped and maximum likelihood methods, resulting in a “soybean mask”. Kappa index values for the eight municipalities were above 0.6. Estimated soybean areas, corrected by the error matrix, were highly correlated with official estimates of the state and with estimates generated from an alternative method called “direct expansion”. Soybean crop area estimation by the normalization of the error matrix is less costly and can aid conventional methods in estimating harvests in a less subjective manner. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-11-09 |
dc.type.none.fl_str_mv |
|
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://seer.sct.embrapa.br/index.php/pab/article/view/11148 |
url |
https://seer.sct.embrapa.br/index.php/pab/article/view/11148 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://seer.sct.embrapa.br/index.php/pab/article/view/11148/7991 https://seer.sct.embrapa.br/index.php/pab/article/downloadSuppFile/11148/6603 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Pesquisa Agropecuaria Brasileira Pesquisa Agropecuária Brasileira |
publisher.none.fl_str_mv |
Pesquisa Agropecuaria Brasileira Pesquisa Agropecuária Brasileira |
dc.source.none.fl_str_mv |
Pesquisa Agropecuaria Brasileira; v.47, n.9, set. 2012: Número Temático Geotecnologias; 1288-1294 Pesquisa Agropecuária Brasileira; v.47, n.9, set. 2012: Número Temático Geotecnologias; 1288-1294 1678-3921 0100-104x reponame:Pesquisa Agropecuária Brasileira (Online) instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa) instacron:EMBRAPA |
instname_str |
Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
instacron_str |
EMBRAPA |
institution |
EMBRAPA |
reponame_str |
Pesquisa Agropecuária Brasileira (Online) |
collection |
Pesquisa Agropecuária Brasileira (Online) |
repository.name.fl_str_mv |
Pesquisa Agropecuária Brasileira (Online) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
repository.mail.fl_str_mv |
pab@sct.embrapa.br || sct.pab@embrapa.br |
_version_ |
1793416662984163328 |