Artificial neural networks compared with Bayesian generalized linear regression for leaf rust resistance prediction in Arabica coffee
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Pesquisa Agropecuária Brasileira (Online) |
Texto Completo: | https://seer.sct.embrapa.br/index.php/pab/article/view/23873 |
Resumo: | The objective of this work was to evaluate the use of artificial neural networks in comparison with Bayesian generalized linear regression to predict leaf rust resistance in Arabica coffee (Coffea arabica). This study used 245 individuals of a F2 population derived from the self-fertilization of the F1 H511-1 hybrid, resulting from a crossing between the susceptible cultivar Catuaí Amarelo IAC 64 (UFV 2148-57) and the resistant parent Híbrido de Timor (UFV 443-03). The 245 individuals were genotyped with 137 markers. Artificial neural networks and Bayesian generalized linear regression analyses were performed. The artificial neural networks were able to identify four important markers belonging to linkage groups that have been recently mapped, while the Bayesian generalized model identified only two markers belonging to these groups. Lower prediction error rates (1.60%) were observed for predicting leaf rust resistance in Arabica coffee when artificial neural networks were used instead of Bayesian generalized linear regression (2.4%). The results showed that artificial neural networks are a promising approach for predicting leaf rust resistance in Arabica coffee. |
id |
EMBRAPA-4_d2f587075785010f04337eb3ff0b047a |
---|---|
oai_identifier_str |
oai:ojs.seer.sct.embrapa.br:article/23873 |
network_acronym_str |
EMBRAPA-4 |
network_name_str |
Pesquisa Agropecuária Brasileira (Online) |
repository_id_str |
|
spelling |
Artificial neural networks compared with Bayesian generalized linear regression for leaf rust resistance prediction in Arabica coffeeRedes neurais artificiais comparadas com modelos lineares generalizados sob o enfoque bayesiano para predição de resistência à ferrugem em café arábicaCoffea arabica; Hemileia vastatrix; artificial intelligence; molecular markers; predictionCoffea arabica; Hemileia vastatrix; inteligência artificial; marcadores moleculares; prediçãoThe objective of this work was to evaluate the use of artificial neural networks in comparison with Bayesian generalized linear regression to predict leaf rust resistance in Arabica coffee (Coffea arabica). This study used 245 individuals of a F2 population derived from the self-fertilization of the F1 H511-1 hybrid, resulting from a crossing between the susceptible cultivar Catuaí Amarelo IAC 64 (UFV 2148-57) and the resistant parent Híbrido de Timor (UFV 443-03). The 245 individuals were genotyped with 137 markers. Artificial neural networks and Bayesian generalized linear regression analyses were performed. The artificial neural networks were able to identify four important markers belonging to linkage groups that have been recently mapped, while the Bayesian generalized model identified only two markers belonging to these groups. Lower prediction error rates (1.60%) were observed for predicting leaf rust resistance in Arabica coffee when artificial neural networks were used instead of Bayesian generalized linear regression (2.4%). The results showed that artificial neural networks are a promising approach for predicting leaf rust resistance in Arabica coffee.O objetivo deste trabalho foi avaliar o uso de redes neurais artificiais em comparação à modelagem por meio de modelos lineares generalizados na predição de resistência à ferrugem em café arábica (Coffea arabica). Foram utilizados 245 indivíduos provenientes de uma população F2, oriundos da autofecundação do híbrido F1 H511-1, resultante do cruzamento da cultivar suscetível Catuaí Amarelo IAC 64 (UFV 2148-57) e do genitor resistente Híbrido de Timor (UFV 443-03). Os 245 indivíduos foram genotipados com 137 marcadores. Realizaram-se análises com redes neurais artificiais e com modelos lineares generalizados sob o enfoque bayesiano. As redes neurais identificaram quatro marcadores importantes pertencentes a grupos de ligação que foram recentemente mapeados, enquanto o modelo generalizado bayesiano identificou somente dois marcadores pertencentes a esses grupos. Foram observadas taxas de erro de predição inferiores (1,60%) para predizer a resistência à ferrugem em café arábica, quando foram utilizadas as redes neurais artificiais em vez de modelos lineares generalizados sob o enfoque bayesiano (2,4%). Os resultados mostraram que as redes neurais artificiais são uma abordagem promissora para predizer a resistência à ferrugem em café arábica.Pesquisa Agropecuaria BrasileiraPesquisa Agropecuária BrasileiraCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes)Fundação de Pesquisa do Estado de Minas Gerais (Fapemig)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Silva, Gabi NunesNascimento, MoysesSant'Anna, Isabela de CastroCruz, Cosme DamiãoCaixeta, Eveline TeixeiraCarneiro, Pedro Crescêncio SouzaRosado, Renato Domiciano SilvaPestana, Katia NogueiraAlmeida, Dênia Pires deOliveira, Marciane da Silva2017-04-20info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://seer.sct.embrapa.br/index.php/pab/article/view/23873Pesquisa Agropecuaria Brasileira; v.52, n.3, mar. 2017; 186-193Pesquisa Agropecuária Brasileira; v.52, n.3, mar. 2017; 186-1931678-39210100-104xreponame:Pesquisa Agropecuária Brasileira (Online)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPAenghttps://seer.sct.embrapa.br/index.php/pab/article/view/23873/13727https://seer.sct.embrapa.br/index.php/pab/article/downloadSuppFile/23873/15812Direitos autorais 2017 Pesquisa Agropecuária Brasileirainfo:eu-repo/semantics/openAccess2017-07-07T18:19:19Zoai:ojs.seer.sct.embrapa.br:article/23873Revistahttp://seer.sct.embrapa.br/index.php/pabPRIhttps://old.scielo.br/oai/scielo-oai.phppab@sct.embrapa.br || sct.pab@embrapa.br1678-39210100-204Xopendoar:2017-07-07T18:19:19Pesquisa Agropecuária Brasileira (Online) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false |
dc.title.none.fl_str_mv |
Artificial neural networks compared with Bayesian generalized linear regression for leaf rust resistance prediction in Arabica coffee Redes neurais artificiais comparadas com modelos lineares generalizados sob o enfoque bayesiano para predição de resistência à ferrugem em café arábica |
title |
Artificial neural networks compared with Bayesian generalized linear regression for leaf rust resistance prediction in Arabica coffee |
spellingShingle |
Artificial neural networks compared with Bayesian generalized linear regression for leaf rust resistance prediction in Arabica coffee Silva, Gabi Nunes Coffea arabica; Hemileia vastatrix; artificial intelligence; molecular markers; prediction Coffea arabica; Hemileia vastatrix; inteligência artificial; marcadores moleculares; predição |
title_short |
Artificial neural networks compared with Bayesian generalized linear regression for leaf rust resistance prediction in Arabica coffee |
title_full |
Artificial neural networks compared with Bayesian generalized linear regression for leaf rust resistance prediction in Arabica coffee |
title_fullStr |
Artificial neural networks compared with Bayesian generalized linear regression for leaf rust resistance prediction in Arabica coffee |
title_full_unstemmed |
Artificial neural networks compared with Bayesian generalized linear regression for leaf rust resistance prediction in Arabica coffee |
title_sort |
Artificial neural networks compared with Bayesian generalized linear regression for leaf rust resistance prediction in Arabica coffee |
author |
Silva, Gabi Nunes |
author_facet |
Silva, Gabi Nunes Nascimento, Moyses Sant'Anna, Isabela de Castro Cruz, Cosme Damião Caixeta, Eveline Teixeira Carneiro, Pedro Crescêncio Souza Rosado, Renato Domiciano Silva Pestana, Katia Nogueira Almeida, Dênia Pires de Oliveira, Marciane da Silva |
author_role |
author |
author2 |
Nascimento, Moyses Sant'Anna, Isabela de Castro Cruz, Cosme Damião Caixeta, Eveline Teixeira Carneiro, Pedro Crescêncio Souza Rosado, Renato Domiciano Silva Pestana, Katia Nogueira Almeida, Dênia Pires de Oliveira, Marciane da Silva |
author2_role |
author author author author author author author author author |
dc.contributor.none.fl_str_mv |
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes) Fundação de Pesquisa do Estado de Minas Gerais (Fapemig) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) |
dc.contributor.author.fl_str_mv |
Silva, Gabi Nunes Nascimento, Moyses Sant'Anna, Isabela de Castro Cruz, Cosme Damião Caixeta, Eveline Teixeira Carneiro, Pedro Crescêncio Souza Rosado, Renato Domiciano Silva Pestana, Katia Nogueira Almeida, Dênia Pires de Oliveira, Marciane da Silva |
dc.subject.por.fl_str_mv |
Coffea arabica; Hemileia vastatrix; artificial intelligence; molecular markers; prediction Coffea arabica; Hemileia vastatrix; inteligência artificial; marcadores moleculares; predição |
topic |
Coffea arabica; Hemileia vastatrix; artificial intelligence; molecular markers; prediction Coffea arabica; Hemileia vastatrix; inteligência artificial; marcadores moleculares; predição |
description |
The objective of this work was to evaluate the use of artificial neural networks in comparison with Bayesian generalized linear regression to predict leaf rust resistance in Arabica coffee (Coffea arabica). This study used 245 individuals of a F2 population derived from the self-fertilization of the F1 H511-1 hybrid, resulting from a crossing between the susceptible cultivar Catuaí Amarelo IAC 64 (UFV 2148-57) and the resistant parent Híbrido de Timor (UFV 443-03). The 245 individuals were genotyped with 137 markers. Artificial neural networks and Bayesian generalized linear regression analyses were performed. The artificial neural networks were able to identify four important markers belonging to linkage groups that have been recently mapped, while the Bayesian generalized model identified only two markers belonging to these groups. Lower prediction error rates (1.60%) were observed for predicting leaf rust resistance in Arabica coffee when artificial neural networks were used instead of Bayesian generalized linear regression (2.4%). The results showed that artificial neural networks are a promising approach for predicting leaf rust resistance in Arabica coffee. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-04-20 |
dc.type.none.fl_str_mv |
|
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://seer.sct.embrapa.br/index.php/pab/article/view/23873 |
url |
https://seer.sct.embrapa.br/index.php/pab/article/view/23873 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://seer.sct.embrapa.br/index.php/pab/article/view/23873/13727 https://seer.sct.embrapa.br/index.php/pab/article/downloadSuppFile/23873/15812 |
dc.rights.driver.fl_str_mv |
Direitos autorais 2017 Pesquisa Agropecuária Brasileira info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Direitos autorais 2017 Pesquisa Agropecuária Brasileira |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Pesquisa Agropecuaria Brasileira Pesquisa Agropecuária Brasileira |
publisher.none.fl_str_mv |
Pesquisa Agropecuaria Brasileira Pesquisa Agropecuária Brasileira |
dc.source.none.fl_str_mv |
Pesquisa Agropecuaria Brasileira; v.52, n.3, mar. 2017; 186-193 Pesquisa Agropecuária Brasileira; v.52, n.3, mar. 2017; 186-193 1678-3921 0100-104x reponame:Pesquisa Agropecuária Brasileira (Online) instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa) instacron:EMBRAPA |
instname_str |
Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
instacron_str |
EMBRAPA |
institution |
EMBRAPA |
reponame_str |
Pesquisa Agropecuária Brasileira (Online) |
collection |
Pesquisa Agropecuária Brasileira (Online) |
repository.name.fl_str_mv |
Pesquisa Agropecuária Brasileira (Online) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
repository.mail.fl_str_mv |
pab@sct.embrapa.br || sct.pab@embrapa.br |
_version_ |
1793416669717069824 |