Artificial neural networks compared with Bayesian generalized linear regression for leaf rust resistance prediction in Arabica coffee.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Outros Autores: | , , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
Texto Completo: | http://www.alice.cnptia.embrapa.br/alice/handle/doc/1069618 |
Resumo: | The objective of this work was to evaluate the use of artificial neural networks in comparison with Bayesian generalized linear regression to predict leaf rust resistance in Arabica coffee (Coffea arabica). This study used 245 individuals of a F2 population derived from the self-fertilization of the F1 H511-1 hybrid, resulting from a crossing between the susceptible cultivar Catuaí Amarelo IAC 64 (UFV 2148-57) and the resistant parent Híbrido de Timor (UFV 443-03). The 245 individuals were genotyped with 137 markers. Artificial neural networks and Bayesian generalized linear regression analyses were performed. The artificial neural networks were able to identify four important markers belonging to linkage groups that have been recently mapped, while the Bayesian generalized model identified only two markers belonging to these groups. Lower prediction error rates (1.60%) were observed for predicting leaf rust resistance in Arabica coffee when artificial neural networks were used instead of Bayesian generalized linear regression (2.4%). The results showed that artificial neural networks are a promising approach for predicting leaf rust resistance in Arabica coffee. |
id |
EMBR_b15185727a9e365e86fa10d7a7251e70 |
---|---|
oai_identifier_str |
oai:www.alice.cnptia.embrapa.br:doc/1069618 |
network_acronym_str |
EMBR |
network_name_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository_id_str |
2154 |
spelling |
Artificial neural networks compared with Bayesian generalized linear regression for leaf rust resistance prediction in Arabica coffee.Inteligência artificialPrediçãoMarcador molecularCoffea ArábicaHemileia VastatrixArtificial intelligenceGenetic markersPredictionThe objective of this work was to evaluate the use of artificial neural networks in comparison with Bayesian generalized linear regression to predict leaf rust resistance in Arabica coffee (Coffea arabica). This study used 245 individuals of a F2 population derived from the self-fertilization of the F1 H511-1 hybrid, resulting from a crossing between the susceptible cultivar Catuaí Amarelo IAC 64 (UFV 2148-57) and the resistant parent Híbrido de Timor (UFV 443-03). The 245 individuals were genotyped with 137 markers. Artificial neural networks and Bayesian generalized linear regression analyses were performed. The artificial neural networks were able to identify four important markers belonging to linkage groups that have been recently mapped, while the Bayesian generalized model identified only two markers belonging to these groups. Lower prediction error rates (1.60%) were observed for predicting leaf rust resistance in Arabica coffee when artificial neural networks were used instead of Bayesian generalized linear regression (2.4%). The results showed that artificial neural networks are a promising approach for predicting leaf rust resistance in Arabica coffee.Título em português: Redes neurais artificiais comparadas com modelos lineares generalizados sob o enfoque bayesiano para predição de resistência à ferrugem em café arábica.GABI NUNES SILVA, UFV-DE; MOYSÉS NASCIMENTO, UFV-DE; ISABELA DE CASTRO SANT'ANNA, UFV-DBG; COSME DAMIÃO CRUZ, UFV-DBG; EVELINE TEIXEIRA CAIXETA, SAPC; PEDRO CRESCENCIO SOUZA CARNEIRO, UFV-DBG; RENATO DOMICIANO SILVA ROSADO, UFV-DBG; KÁTIA NOGUEIRA PESTANA, CNPMF; DÊNIA PIRES DE ALMEIDA, UFV-IBAA; MARCIANE DA SILVA OLIVEIRA, UFV-DBG.SILVA, G. N.NASCIMENTO, M.SANT'ANNA, I. de C.CRUZ, C. D.CAIXETA, E. T.CARNEIRO, P. C. S.ROSADO, R. D. S.PESTANA, K. N.ALMEIDA, D. P. deOLIVEIRA, M. da S.2017-05-16T11:11:11Z2017-05-16T11:11:11Z2017-05-1620172017-12-15T11:11:11Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlePesquisa Agropecuária Brasileira, Brasília, DF, v. 52, n. 3, p. 186-193, mar. 2017.http://www.alice.cnptia.embrapa.br/alice/handle/doc/1069618enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2017-08-16T04:24:47Zoai:www.alice.cnptia.embrapa.br:doc/1069618Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542017-08-16T04:24:47falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542017-08-16T04:24:47Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false |
dc.title.none.fl_str_mv |
Artificial neural networks compared with Bayesian generalized linear regression for leaf rust resistance prediction in Arabica coffee. |
title |
Artificial neural networks compared with Bayesian generalized linear regression for leaf rust resistance prediction in Arabica coffee. |
spellingShingle |
Artificial neural networks compared with Bayesian generalized linear regression for leaf rust resistance prediction in Arabica coffee. SILVA, G. N. Inteligência artificial Predição Marcador molecular Coffea Arábica Hemileia Vastatrix Artificial intelligence Genetic markers Prediction |
title_short |
Artificial neural networks compared with Bayesian generalized linear regression for leaf rust resistance prediction in Arabica coffee. |
title_full |
Artificial neural networks compared with Bayesian generalized linear regression for leaf rust resistance prediction in Arabica coffee. |
title_fullStr |
Artificial neural networks compared with Bayesian generalized linear regression for leaf rust resistance prediction in Arabica coffee. |
title_full_unstemmed |
Artificial neural networks compared with Bayesian generalized linear regression for leaf rust resistance prediction in Arabica coffee. |
title_sort |
Artificial neural networks compared with Bayesian generalized linear regression for leaf rust resistance prediction in Arabica coffee. |
author |
SILVA, G. N. |
author_facet |
SILVA, G. N. NASCIMENTO, M. SANT'ANNA, I. de C. CRUZ, C. D. CAIXETA, E. T. CARNEIRO, P. C. S. ROSADO, R. D. S. PESTANA, K. N. ALMEIDA, D. P. de OLIVEIRA, M. da S. |
author_role |
author |
author2 |
NASCIMENTO, M. SANT'ANNA, I. de C. CRUZ, C. D. CAIXETA, E. T. CARNEIRO, P. C. S. ROSADO, R. D. S. PESTANA, K. N. ALMEIDA, D. P. de OLIVEIRA, M. da S. |
author2_role |
author author author author author author author author author |
dc.contributor.none.fl_str_mv |
GABI NUNES SILVA, UFV-DE; MOYSÉS NASCIMENTO, UFV-DE; ISABELA DE CASTRO SANT'ANNA, UFV-DBG; COSME DAMIÃO CRUZ, UFV-DBG; EVELINE TEIXEIRA CAIXETA, SAPC; PEDRO CRESCENCIO SOUZA CARNEIRO, UFV-DBG; RENATO DOMICIANO SILVA ROSADO, UFV-DBG; KÁTIA NOGUEIRA PESTANA, CNPMF; DÊNIA PIRES DE ALMEIDA, UFV-IBAA; MARCIANE DA SILVA OLIVEIRA, UFV-DBG. |
dc.contributor.author.fl_str_mv |
SILVA, G. N. NASCIMENTO, M. SANT'ANNA, I. de C. CRUZ, C. D. CAIXETA, E. T. CARNEIRO, P. C. S. ROSADO, R. D. S. PESTANA, K. N. ALMEIDA, D. P. de OLIVEIRA, M. da S. |
dc.subject.por.fl_str_mv |
Inteligência artificial Predição Marcador molecular Coffea Arábica Hemileia Vastatrix Artificial intelligence Genetic markers Prediction |
topic |
Inteligência artificial Predição Marcador molecular Coffea Arábica Hemileia Vastatrix Artificial intelligence Genetic markers Prediction |
description |
The objective of this work was to evaluate the use of artificial neural networks in comparison with Bayesian generalized linear regression to predict leaf rust resistance in Arabica coffee (Coffea arabica). This study used 245 individuals of a F2 population derived from the self-fertilization of the F1 H511-1 hybrid, resulting from a crossing between the susceptible cultivar Catuaí Amarelo IAC 64 (UFV 2148-57) and the resistant parent Híbrido de Timor (UFV 443-03). The 245 individuals were genotyped with 137 markers. Artificial neural networks and Bayesian generalized linear regression analyses were performed. The artificial neural networks were able to identify four important markers belonging to linkage groups that have been recently mapped, while the Bayesian generalized model identified only two markers belonging to these groups. Lower prediction error rates (1.60%) were observed for predicting leaf rust resistance in Arabica coffee when artificial neural networks were used instead of Bayesian generalized linear regression (2.4%). The results showed that artificial neural networks are a promising approach for predicting leaf rust resistance in Arabica coffee. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-05-16T11:11:11Z 2017-05-16T11:11:11Z 2017-05-16 2017 2017-12-15T11:11:11Z |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
Pesquisa Agropecuária Brasileira, Brasília, DF, v. 52, n. 3, p. 186-193, mar. 2017. http://www.alice.cnptia.embrapa.br/alice/handle/doc/1069618 |
identifier_str_mv |
Pesquisa Agropecuária Brasileira, Brasília, DF, v. 52, n. 3, p. 186-193, mar. 2017. |
url |
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1069618 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa) instacron:EMBRAPA |
instname_str |
Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
instacron_str |
EMBRAPA |
institution |
EMBRAPA |
reponame_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
collection |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository.name.fl_str_mv |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
repository.mail.fl_str_mv |
cg-riaa@embrapa.br |
_version_ |
1794503436065046528 |