Artificial neural networks compared with Bayesian generalized linear regression for leaf rust resistance prediction in Arabica coffee.

Detalhes bibliográficos
Autor(a) principal: SILVA, G. N.
Data de Publicação: 2017
Outros Autores: NASCIMENTO, M., SANT'ANNA, I. de C., CRUZ, C. D., CAIXETA, E. T., CARNEIRO, P. C. S., ROSADO, R. D. S., PESTANA, K. N., ALMEIDA, D. P. de, OLIVEIRA, M. da S.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
Texto Completo: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1069618
Resumo: The objective of this work was to evaluate the use of artificial neural networks in comparison with Bayesian generalized linear regression to predict leaf rust resistance in Arabica coffee (Coffea arabica). This study used 245 individuals of a F2 population derived from the self-fertilization of the F1 H511-1 hybrid, resulting from a crossing between the susceptible cultivar Catuaí Amarelo IAC 64 (UFV 2148-57) and the resistant parent Híbrido de Timor (UFV 443-03). The 245 individuals were genotyped with 137 markers. Artificial neural networks and Bayesian generalized linear regression analyses were performed. The artificial neural networks were able to identify four important markers belonging to linkage groups that have been recently mapped, while the Bayesian generalized model identified only two markers belonging to these groups. Lower prediction error rates (1.60%) were observed for predicting leaf rust resistance in Arabica coffee when artificial neural networks were used instead of Bayesian generalized linear regression (2.4%). The results showed that artificial neural networks are a promising approach for predicting leaf rust resistance in Arabica coffee.
id EMBR_b15185727a9e365e86fa10d7a7251e70
oai_identifier_str oai:www.alice.cnptia.embrapa.br:doc/1069618
network_acronym_str EMBR
network_name_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository_id_str 2154
spelling Artificial neural networks compared with Bayesian generalized linear regression for leaf rust resistance prediction in Arabica coffee.Inteligência artificialPrediçãoMarcador molecularCoffea ArábicaHemileia VastatrixArtificial intelligenceGenetic markersPredictionThe objective of this work was to evaluate the use of artificial neural networks in comparison with Bayesian generalized linear regression to predict leaf rust resistance in Arabica coffee (Coffea arabica). This study used 245 individuals of a F2 population derived from the self-fertilization of the F1 H511-1 hybrid, resulting from a crossing between the susceptible cultivar Catuaí Amarelo IAC 64 (UFV 2148-57) and the resistant parent Híbrido de Timor (UFV 443-03). The 245 individuals were genotyped with 137 markers. Artificial neural networks and Bayesian generalized linear regression analyses were performed. The artificial neural networks were able to identify four important markers belonging to linkage groups that have been recently mapped, while the Bayesian generalized model identified only two markers belonging to these groups. Lower prediction error rates (1.60%) were observed for predicting leaf rust resistance in Arabica coffee when artificial neural networks were used instead of Bayesian generalized linear regression (2.4%). The results showed that artificial neural networks are a promising approach for predicting leaf rust resistance in Arabica coffee.Título em português: Redes neurais artificiais comparadas com modelos lineares generalizados sob o enfoque bayesiano para predição de resistência à ferrugem em café arábica.GABI NUNES SILVA, UFV-DE; MOYSÉS NASCIMENTO, UFV-DE; ISABELA DE CASTRO SANT'ANNA, UFV-DBG; COSME DAMIÃO CRUZ, UFV-DBG; EVELINE TEIXEIRA CAIXETA, SAPC; PEDRO CRESCENCIO SOUZA CARNEIRO, UFV-DBG; RENATO DOMICIANO SILVA ROSADO, UFV-DBG; KÁTIA NOGUEIRA PESTANA, CNPMF; DÊNIA PIRES DE ALMEIDA, UFV-IBAA; MARCIANE DA SILVA OLIVEIRA, UFV-DBG.SILVA, G. N.NASCIMENTO, M.SANT'ANNA, I. de C.CRUZ, C. D.CAIXETA, E. T.CARNEIRO, P. C. S.ROSADO, R. D. S.PESTANA, K. N.ALMEIDA, D. P. deOLIVEIRA, M. da S.2017-05-16T11:11:11Z2017-05-16T11:11:11Z2017-05-1620172017-12-15T11:11:11Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlePesquisa Agropecuária Brasileira, Brasília, DF, v. 52, n. 3, p. 186-193, mar. 2017.http://www.alice.cnptia.embrapa.br/alice/handle/doc/1069618enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2017-08-16T04:24:47Zoai:www.alice.cnptia.embrapa.br:doc/1069618Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542017-08-16T04:24:47falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542017-08-16T04:24:47Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv Artificial neural networks compared with Bayesian generalized linear regression for leaf rust resistance prediction in Arabica coffee.
title Artificial neural networks compared with Bayesian generalized linear regression for leaf rust resistance prediction in Arabica coffee.
spellingShingle Artificial neural networks compared with Bayesian generalized linear regression for leaf rust resistance prediction in Arabica coffee.
SILVA, G. N.
Inteligência artificial
Predição
Marcador molecular
Coffea Arábica
Hemileia Vastatrix
Artificial intelligence
Genetic markers
Prediction
title_short Artificial neural networks compared with Bayesian generalized linear regression for leaf rust resistance prediction in Arabica coffee.
title_full Artificial neural networks compared with Bayesian generalized linear regression for leaf rust resistance prediction in Arabica coffee.
title_fullStr Artificial neural networks compared with Bayesian generalized linear regression for leaf rust resistance prediction in Arabica coffee.
title_full_unstemmed Artificial neural networks compared with Bayesian generalized linear regression for leaf rust resistance prediction in Arabica coffee.
title_sort Artificial neural networks compared with Bayesian generalized linear regression for leaf rust resistance prediction in Arabica coffee.
author SILVA, G. N.
author_facet SILVA, G. N.
NASCIMENTO, M.
SANT'ANNA, I. de C.
CRUZ, C. D.
CAIXETA, E. T.
CARNEIRO, P. C. S.
ROSADO, R. D. S.
PESTANA, K. N.
ALMEIDA, D. P. de
OLIVEIRA, M. da S.
author_role author
author2 NASCIMENTO, M.
SANT'ANNA, I. de C.
CRUZ, C. D.
CAIXETA, E. T.
CARNEIRO, P. C. S.
ROSADO, R. D. S.
PESTANA, K. N.
ALMEIDA, D. P. de
OLIVEIRA, M. da S.
author2_role author
author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv GABI NUNES SILVA, UFV-DE; MOYSÉS NASCIMENTO, UFV-DE; ISABELA DE CASTRO SANT'ANNA, UFV-DBG; COSME DAMIÃO CRUZ, UFV-DBG; EVELINE TEIXEIRA CAIXETA, SAPC; PEDRO CRESCENCIO SOUZA CARNEIRO, UFV-DBG; RENATO DOMICIANO SILVA ROSADO, UFV-DBG; KÁTIA NOGUEIRA PESTANA, CNPMF; DÊNIA PIRES DE ALMEIDA, UFV-IBAA; MARCIANE DA SILVA OLIVEIRA, UFV-DBG.
dc.contributor.author.fl_str_mv SILVA, G. N.
NASCIMENTO, M.
SANT'ANNA, I. de C.
CRUZ, C. D.
CAIXETA, E. T.
CARNEIRO, P. C. S.
ROSADO, R. D. S.
PESTANA, K. N.
ALMEIDA, D. P. de
OLIVEIRA, M. da S.
dc.subject.por.fl_str_mv Inteligência artificial
Predição
Marcador molecular
Coffea Arábica
Hemileia Vastatrix
Artificial intelligence
Genetic markers
Prediction
topic Inteligência artificial
Predição
Marcador molecular
Coffea Arábica
Hemileia Vastatrix
Artificial intelligence
Genetic markers
Prediction
description The objective of this work was to evaluate the use of artificial neural networks in comparison with Bayesian generalized linear regression to predict leaf rust resistance in Arabica coffee (Coffea arabica). This study used 245 individuals of a F2 population derived from the self-fertilization of the F1 H511-1 hybrid, resulting from a crossing between the susceptible cultivar Catuaí Amarelo IAC 64 (UFV 2148-57) and the resistant parent Híbrido de Timor (UFV 443-03). The 245 individuals were genotyped with 137 markers. Artificial neural networks and Bayesian generalized linear regression analyses were performed. The artificial neural networks were able to identify four important markers belonging to linkage groups that have been recently mapped, while the Bayesian generalized model identified only two markers belonging to these groups. Lower prediction error rates (1.60%) were observed for predicting leaf rust resistance in Arabica coffee when artificial neural networks were used instead of Bayesian generalized linear regression (2.4%). The results showed that artificial neural networks are a promising approach for predicting leaf rust resistance in Arabica coffee.
publishDate 2017
dc.date.none.fl_str_mv 2017-05-16T11:11:11Z
2017-05-16T11:11:11Z
2017-05-16
2017
2017-12-15T11:11:11Z
dc.type.driver.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv Pesquisa Agropecuária Brasileira, Brasília, DF, v. 52, n. 3, p. 186-193, mar. 2017.
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1069618
identifier_str_mv Pesquisa Agropecuária Brasileira, Brasília, DF, v. 52, n. 3, p. 186-193, mar. 2017.
url http://www.alice.cnptia.embrapa.br/alice/handle/doc/1069618
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
collection Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository.name.fl_str_mv Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv cg-riaa@embrapa.br
_version_ 1794503436065046528