Using remote sensing images for stratification of the cerrado in forest inventories

Detalhes bibliográficos
Autor(a) principal: Silva, Sérgio Teixeira da
Data de Publicação: 2014
Outros Autores: Mello, José Marcio de, Acerbi Junior, Fausto Weimar, Reis, Aliny Aparecida dos, Raimundo, Marcel Regis, Silva, Iasmim Louriene Gouveia, Scolforo, José Roberto Soares
Tipo de documento: Artigo
Idioma: por
Título da fonte: Pesquisa Florestal Brasileira (Online)
Texto Completo: https://pfb.cnpf.embrapa.br/pfb/index.php/pfb/article/view/742
Resumo: Remote sensing imagery can be a very useful auxiliary tool for native forests inventory. Thus, the objective of this study was to evaluate the stratification of a cerrado (Brazilian savanna) patch based on visual image interpretation techniques as well as to compare the errors from two sampling designs, the Stratified Random Sampling (SRS) and the Systematic Sampling (SS).The study area corresponds to a cerrado sensu stricto patch located in the municipality of Papagaios, Minas Gerais, Brazil. The cerrado wood volumes were obtained from a forest inventory field campaign where 32 plots were measured systematically. The study area was stratified based on a visual interpretation of a Landsat 5 TM image, and the strata formed were: “Strata I”, “Strata II”, “Strata III”, water and riparian forests. There was a reduction of 43% on the inventory errors using the SS estimators compared to the inventory errors using the SRS estimators. We concluded that the stratification based on image interpretation techniques was efficient since there was a reduction on the cerrado inventory errors.
id EMBRAPA-5_4c216120ff6118873c848db52e5a481e
oai_identifier_str oai:pfb.cnpf.embrapa.br/pfb:article/742
network_acronym_str EMBRAPA-5
network_name_str Pesquisa Florestal Brasileira (Online)
repository_id_str
spelling Using remote sensing images for stratification of the cerrado in forest inventoriesUso de imagens de sensoriamento remoto para estratificação do cerrado em inventários florestaisSystematic samplingTratified Random SamplingVisual image interpretationRemote SensingAmostragem SistemáticaAmostragem Casual EstratificadaInterpretação visual de imagensSensoriamento remotoRemote sensing imagery can be a very useful auxiliary tool for native forests inventory. Thus, the objective of this study was to evaluate the stratification of a cerrado (Brazilian savanna) patch based on visual image interpretation techniques as well as to compare the errors from two sampling designs, the Stratified Random Sampling (SRS) and the Systematic Sampling (SS).The study area corresponds to a cerrado sensu stricto patch located in the municipality of Papagaios, Minas Gerais, Brazil. The cerrado wood volumes were obtained from a forest inventory field campaign where 32 plots were measured systematically. The study area was stratified based on a visual interpretation of a Landsat 5 TM image, and the strata formed were: “Strata I”, “Strata II”, “Strata III”, water and riparian forests. There was a reduction of 43% on the inventory errors using the SS estimators compared to the inventory errors using the SRS estimators. We concluded that the stratification based on image interpretation techniques was efficient since there was a reduction on the cerrado inventory errors.As imagens de sensoriamento remoto podem ser utilizadas como uma ferramenta auxiliar para o inventário de florestas nativas. Nesse sentido, o objetivo deste trabalho foi avaliar o processo de estratificação de um fragmento de cerrado com base em técnicas de interpretação visual de imagens e comparar os erros de estimativa de dois desenhos amostrais, a Amostragem Casual Estratificada (ACE) e a Amostragem Sistemática (AS). A área de estudo corresponde a um fragmento de cerrado sensu stricto localizado no município de Papagaios, MG. Os volumes de madeira do cerrado foram obtidos através de um inventário de campo onde 32 unidades amostrais foram medidas sistematicamente. Realizou-se a estratificação da área de estudo utilizando a interpretação visual de uma imagem Landsat 5 TM e os estratos formados foram: “Estrato I”, “Estrato II”, “Estrato III”, água e mata ciliar. Houve redução de 43% no erro do inventário empregando-se os estimadores da ACE, em relação aos estimadores da AS. Concluiu-se que o procedimento de estratificação baseado em interpretação visual de imagens de sensoriamento remoto foi eficiente, produzindo estratos homogêneos e reduzindo os erros do inventário florestal.Embrapa Florestas2014-12-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://pfb.cnpf.embrapa.br/pfb/index.php/pfb/article/view/74210.4336/2014.pfb.34.80.742Pesquisa Florestal Brasileira; v. 34 n. 80 (2014): out./dez.; 337-343Pesquisa Florestal Brasileira; Vol. 34 No. 80 (2014): out./dez.; 337-3431983-26051809-3647reponame:Pesquisa Florestal Brasileira (Online)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPAporhttps://pfb.cnpf.embrapa.br/pfb/index.php/pfb/article/view/742/398Copyright (c) 2014 Sérgio Teixeira da Silva, José Marcio de Mello, Fausto Weimar Acerbi Junior, Aliny Aparecida dos Reis, Marcel Regis Raimundo, Iasmim Louriene Gouveia Silva, José Roberto Soares Scolforohttps://creativecommons.org/licenses/by-nc-nd/4.0info:eu-repo/semantics/openAccessSilva, Sérgio Teixeira daMello, José Marcio deAcerbi Junior, Fausto WeimarReis, Aliny Aparecida dosRaimundo, Marcel RegisSilva, Iasmim Louriene GouveiaScolforo, José Roberto Soares2017-04-28T12:49:00Zoai:pfb.cnpf.embrapa.br/pfb:article/742Revistahttps://pfb.cnpf.embrapa.br/pfb/index.php/pfb/PUBhttps://pfb.cnpf.embrapa.br/pfb/index.php/pfb/oaipfb@embrapa.br || revista.pfb@gmail.com || patricia.mattos@embrapa.br1983-26051809-3647opendoar:2017-04-28T12:49Pesquisa Florestal Brasileira (Online) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv Using remote sensing images for stratification of the cerrado in forest inventories
Uso de imagens de sensoriamento remoto para estratificação do cerrado em inventários florestais
title Using remote sensing images for stratification of the cerrado in forest inventories
spellingShingle Using remote sensing images for stratification of the cerrado in forest inventories
Silva, Sérgio Teixeira da
Systematic sampling
Tratified Random Sampling
Visual image interpretation
Remote Sensing
Amostragem Sistemática
Amostragem Casual Estratificada
Interpretação visual de imagens
Sensoriamento remoto
title_short Using remote sensing images for stratification of the cerrado in forest inventories
title_full Using remote sensing images for stratification of the cerrado in forest inventories
title_fullStr Using remote sensing images for stratification of the cerrado in forest inventories
title_full_unstemmed Using remote sensing images for stratification of the cerrado in forest inventories
title_sort Using remote sensing images for stratification of the cerrado in forest inventories
author Silva, Sérgio Teixeira da
author_facet Silva, Sérgio Teixeira da
Mello, José Marcio de
Acerbi Junior, Fausto Weimar
Reis, Aliny Aparecida dos
Raimundo, Marcel Regis
Silva, Iasmim Louriene Gouveia
Scolforo, José Roberto Soares
author_role author
author2 Mello, José Marcio de
Acerbi Junior, Fausto Weimar
Reis, Aliny Aparecida dos
Raimundo, Marcel Regis
Silva, Iasmim Louriene Gouveia
Scolforo, José Roberto Soares
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv Silva, Sérgio Teixeira da
Mello, José Marcio de
Acerbi Junior, Fausto Weimar
Reis, Aliny Aparecida dos
Raimundo, Marcel Regis
Silva, Iasmim Louriene Gouveia
Scolforo, José Roberto Soares
dc.subject.por.fl_str_mv Systematic sampling
Tratified Random Sampling
Visual image interpretation
Remote Sensing
Amostragem Sistemática
Amostragem Casual Estratificada
Interpretação visual de imagens
Sensoriamento remoto
topic Systematic sampling
Tratified Random Sampling
Visual image interpretation
Remote Sensing
Amostragem Sistemática
Amostragem Casual Estratificada
Interpretação visual de imagens
Sensoriamento remoto
description Remote sensing imagery can be a very useful auxiliary tool for native forests inventory. Thus, the objective of this study was to evaluate the stratification of a cerrado (Brazilian savanna) patch based on visual image interpretation techniques as well as to compare the errors from two sampling designs, the Stratified Random Sampling (SRS) and the Systematic Sampling (SS).The study area corresponds to a cerrado sensu stricto patch located in the municipality of Papagaios, Minas Gerais, Brazil. The cerrado wood volumes were obtained from a forest inventory field campaign where 32 plots were measured systematically. The study area was stratified based on a visual interpretation of a Landsat 5 TM image, and the strata formed were: “Strata I”, “Strata II”, “Strata III”, water and riparian forests. There was a reduction of 43% on the inventory errors using the SS estimators compared to the inventory errors using the SRS estimators. We concluded that the stratification based on image interpretation techniques was efficient since there was a reduction on the cerrado inventory errors.
publishDate 2014
dc.date.none.fl_str_mv 2014-12-30
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://pfb.cnpf.embrapa.br/pfb/index.php/pfb/article/view/742
10.4336/2014.pfb.34.80.742
url https://pfb.cnpf.embrapa.br/pfb/index.php/pfb/article/view/742
identifier_str_mv 10.4336/2014.pfb.34.80.742
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://pfb.cnpf.embrapa.br/pfb/index.php/pfb/article/view/742/398
dc.rights.driver.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Embrapa Florestas
publisher.none.fl_str_mv Embrapa Florestas
dc.source.none.fl_str_mv Pesquisa Florestal Brasileira; v. 34 n. 80 (2014): out./dez.; 337-343
Pesquisa Florestal Brasileira; Vol. 34 No. 80 (2014): out./dez.; 337-343
1983-2605
1809-3647
reponame:Pesquisa Florestal Brasileira (Online)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Pesquisa Florestal Brasileira (Online)
collection Pesquisa Florestal Brasileira (Online)
repository.name.fl_str_mv Pesquisa Florestal Brasileira (Online) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv pfb@embrapa.br || revista.pfb@gmail.com || patricia.mattos@embrapa.br
_version_ 1783370935130128384