Comparing logistic function and clutter prognosis models

Detalhes bibliográficos
Autor(a) principal: Gonçalves, Juliana Carneiro
Data de Publicação: 2016
Outros Autores: Carvalho, Samuel de Padua Chaves e, Oliveira, Antonio Donizette de, Gomide, Lucas Rezende
Tipo de documento: Artigo
Idioma: por
Título da fonte: Pesquisa Florestal Brasileira (Online)
Texto Completo: https://pfb.cnpf.embrapa.br/pfb/index.php/pfb/article/view/1230
Resumo: The aim this study was to compare the performance of two non-linear models and the classic Clutter’s system on volume prognosis in fully stocking Eucalyptus stands from Espírito Santo, Brazil. Mean standard error percentual, Akaike and Bayesian criteria, supplemented by graphical analysis were used to evaluate models fit. Models performance presented better results up to four times when covariables were included in the adjustment process. It was observed that logistic function with covariables was superior than it´s original form and more appropriate then Clutter’s system. The results showed better results of non-linear system to modeling forest growth and yield indicating forest rotation near five years. These results are consistent with Eucalyptus plantation for biomass in Brazil.
id EMBRAPA-5_5fb2f2481a6467bf204ec0c27345943b
oai_identifier_str oai:pfb.cnpf.embrapa.br/pfb:article/1230
network_acronym_str EMBRAPA-5
network_name_str Pesquisa Florestal Brasileira (Online)
repository_id_str
spelling Comparing logistic function and clutter prognosis modelsComparação dos modelos prognósticos de Clutter e da função LogísticaForest YieldForests BiometricNon-linear ModelsCrescimento e Produção FlorestalBiometria FlorestalModelos Não-Lineares.The aim this study was to compare the performance of two non-linear models and the classic Clutter’s system on volume prognosis in fully stocking Eucalyptus stands from Espírito Santo, Brazil. Mean standard error percentual, Akaike and Bayesian criteria, supplemented by graphical analysis were used to evaluate models fit. Models performance presented better results up to four times when covariables were included in the adjustment process. It was observed that logistic function with covariables was superior than it´s original form and more appropriate then Clutter’s system. The results showed better results of non-linear system to modeling forest growth and yield indicating forest rotation near five years. These results are consistent with Eucalyptus plantation for biomass in Brazil.O objetivo deste estudo foi comparar o desempenho de dois modelos não-lineares e o sistema de equações simultâneas de Clutter na progrnose do volume de madeira em povoamentos clonais e superestoocados de Eucalyptus spp no Espírito Santo, Brasil. Para fins de avaliação da qualidade dos ajustes e comparação dos modelos, foi utilizado o Erro Padrão da Média Percentual, os Critérios de Informação de Akaike e Bayesiano, complementados pela análise gráfica dos resíduos padronizados. A inclusão das covariáveis, sítio e área basal, nos sistemas não-lineares de projeção em volume garantiram uma melhoria expressiva na acurácia das estimativas para a função logística com erros reduzidos em até quatro vezes. Verificou-se ainda que a função logística com inclusão de variáveis foi altamente superior a sua forma original de ajuste e mais coerente quando comparada ao sistema de equações simultâneas de Clutter. Os resultados permitiram inferir ainda sobre a superioridade do sistema não-linear de modelagem indicando valores de incremento médio anual máximos próximos a 5 anos, o que o torna condizente com a realidade das plantações florestais de eucalipto para produção de biomassa no Brasil.Embrapa Florestas2016-09-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://pfb.cnpf.embrapa.br/pfb/index.php/pfb/article/view/123010.4336/2016.pfb.36.87.1230Pesquisa Florestal Brasileira; v. 36 n. 87 (2016): jul./set.; 311-317Pesquisa Florestal Brasileira; Vol. 36 No. 87 (2016): jul./set.; 311-3171983-26051809-3647reponame:Pesquisa Florestal Brasileira (Online)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPAporhttps://pfb.cnpf.embrapa.br/pfb/index.php/pfb/article/view/1230/521Copyright (c) 2016 Juliana Carneiro Gonçalves, Samuel de Padua Chaves e Carvalho, Antonio Donizette de Oliveira, Lucas Rezende Gomidehttps://creativecommons.org/licenses/by-nc-nd/4.0info:eu-repo/semantics/openAccessGonçalves, Juliana CarneiroCarvalho, Samuel de Padua Chaves eOliveira, Antonio Donizette deGomide, Lucas Rezende2017-04-28T14:13:12Zoai:pfb.cnpf.embrapa.br/pfb:article/1230Revistahttps://pfb.cnpf.embrapa.br/pfb/index.php/pfb/PUBhttps://pfb.cnpf.embrapa.br/pfb/index.php/pfb/oaipfb@embrapa.br || revista.pfb@gmail.com || patricia.mattos@embrapa.br1983-26051809-3647opendoar:2017-04-28T14:13:12Pesquisa Florestal Brasileira (Online) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv Comparing logistic function and clutter prognosis models
Comparação dos modelos prognósticos de Clutter e da função Logística
title Comparing logistic function and clutter prognosis models
spellingShingle Comparing logistic function and clutter prognosis models
Gonçalves, Juliana Carneiro
Forest Yield
Forests Biometric
Non-linear Models
Crescimento e Produção Florestal
Biometria Florestal
Modelos Não-Lineares.
title_short Comparing logistic function and clutter prognosis models
title_full Comparing logistic function and clutter prognosis models
title_fullStr Comparing logistic function and clutter prognosis models
title_full_unstemmed Comparing logistic function and clutter prognosis models
title_sort Comparing logistic function and clutter prognosis models
author Gonçalves, Juliana Carneiro
author_facet Gonçalves, Juliana Carneiro
Carvalho, Samuel de Padua Chaves e
Oliveira, Antonio Donizette de
Gomide, Lucas Rezende
author_role author
author2 Carvalho, Samuel de Padua Chaves e
Oliveira, Antonio Donizette de
Gomide, Lucas Rezende
author2_role author
author
author
dc.contributor.author.fl_str_mv Gonçalves, Juliana Carneiro
Carvalho, Samuel de Padua Chaves e
Oliveira, Antonio Donizette de
Gomide, Lucas Rezende
dc.subject.por.fl_str_mv Forest Yield
Forests Biometric
Non-linear Models
Crescimento e Produção Florestal
Biometria Florestal
Modelos Não-Lineares.
topic Forest Yield
Forests Biometric
Non-linear Models
Crescimento e Produção Florestal
Biometria Florestal
Modelos Não-Lineares.
description The aim this study was to compare the performance of two non-linear models and the classic Clutter’s system on volume prognosis in fully stocking Eucalyptus stands from Espírito Santo, Brazil. Mean standard error percentual, Akaike and Bayesian criteria, supplemented by graphical analysis were used to evaluate models fit. Models performance presented better results up to four times when covariables were included in the adjustment process. It was observed that logistic function with covariables was superior than it´s original form and more appropriate then Clutter’s system. The results showed better results of non-linear system to modeling forest growth and yield indicating forest rotation near five years. These results are consistent with Eucalyptus plantation for biomass in Brazil.
publishDate 2016
dc.date.none.fl_str_mv 2016-09-30
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://pfb.cnpf.embrapa.br/pfb/index.php/pfb/article/view/1230
10.4336/2016.pfb.36.87.1230
url https://pfb.cnpf.embrapa.br/pfb/index.php/pfb/article/view/1230
identifier_str_mv 10.4336/2016.pfb.36.87.1230
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://pfb.cnpf.embrapa.br/pfb/index.php/pfb/article/view/1230/521
dc.rights.driver.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Embrapa Florestas
publisher.none.fl_str_mv Embrapa Florestas
dc.source.none.fl_str_mv Pesquisa Florestal Brasileira; v. 36 n. 87 (2016): jul./set.; 311-317
Pesquisa Florestal Brasileira; Vol. 36 No. 87 (2016): jul./set.; 311-317
1983-2605
1809-3647
reponame:Pesquisa Florestal Brasileira (Online)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Pesquisa Florestal Brasileira (Online)
collection Pesquisa Florestal Brasileira (Online)
repository.name.fl_str_mv Pesquisa Florestal Brasileira (Online) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv pfb@embrapa.br || revista.pfb@gmail.com || patricia.mattos@embrapa.br
_version_ 1783370936015126528