Comparing logistic function and clutter prognosis models
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Pesquisa Florestal Brasileira (Online) |
Texto Completo: | https://pfb.cnpf.embrapa.br/pfb/index.php/pfb/article/view/1230 |
Resumo: | The aim this study was to compare the performance of two non-linear models and the classic Clutter’s system on volume prognosis in fully stocking Eucalyptus stands from Espírito Santo, Brazil. Mean standard error percentual, Akaike and Bayesian criteria, supplemented by graphical analysis were used to evaluate models fit. Models performance presented better results up to four times when covariables were included in the adjustment process. It was observed that logistic function with covariables was superior than it´s original form and more appropriate then Clutter’s system. The results showed better results of non-linear system to modeling forest growth and yield indicating forest rotation near five years. These results are consistent with Eucalyptus plantation for biomass in Brazil. |
id |
EMBRAPA-5_5fb2f2481a6467bf204ec0c27345943b |
---|---|
oai_identifier_str |
oai:pfb.cnpf.embrapa.br/pfb:article/1230 |
network_acronym_str |
EMBRAPA-5 |
network_name_str |
Pesquisa Florestal Brasileira (Online) |
repository_id_str |
|
spelling |
Comparing logistic function and clutter prognosis modelsComparação dos modelos prognósticos de Clutter e da função LogísticaForest YieldForests BiometricNon-linear ModelsCrescimento e Produção FlorestalBiometria FlorestalModelos Não-Lineares.The aim this study was to compare the performance of two non-linear models and the classic Clutter’s system on volume prognosis in fully stocking Eucalyptus stands from Espírito Santo, Brazil. Mean standard error percentual, Akaike and Bayesian criteria, supplemented by graphical analysis were used to evaluate models fit. Models performance presented better results up to four times when covariables were included in the adjustment process. It was observed that logistic function with covariables was superior than it´s original form and more appropriate then Clutter’s system. The results showed better results of non-linear system to modeling forest growth and yield indicating forest rotation near five years. These results are consistent with Eucalyptus plantation for biomass in Brazil.O objetivo deste estudo foi comparar o desempenho de dois modelos não-lineares e o sistema de equações simultâneas de Clutter na progrnose do volume de madeira em povoamentos clonais e superestoocados de Eucalyptus spp no Espírito Santo, Brasil. Para fins de avaliação da qualidade dos ajustes e comparação dos modelos, foi utilizado o Erro Padrão da Média Percentual, os Critérios de Informação de Akaike e Bayesiano, complementados pela análise gráfica dos resíduos padronizados. A inclusão das covariáveis, sítio e área basal, nos sistemas não-lineares de projeção em volume garantiram uma melhoria expressiva na acurácia das estimativas para a função logística com erros reduzidos em até quatro vezes. Verificou-se ainda que a função logística com inclusão de variáveis foi altamente superior a sua forma original de ajuste e mais coerente quando comparada ao sistema de equações simultâneas de Clutter. Os resultados permitiram inferir ainda sobre a superioridade do sistema não-linear de modelagem indicando valores de incremento médio anual máximos próximos a 5 anos, o que o torna condizente com a realidade das plantações florestais de eucalipto para produção de biomassa no Brasil.Embrapa Florestas2016-09-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://pfb.cnpf.embrapa.br/pfb/index.php/pfb/article/view/123010.4336/2016.pfb.36.87.1230Pesquisa Florestal Brasileira; v. 36 n. 87 (2016): jul./set.; 311-317Pesquisa Florestal Brasileira; Vol. 36 No. 87 (2016): jul./set.; 311-3171983-26051809-3647reponame:Pesquisa Florestal Brasileira (Online)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPAporhttps://pfb.cnpf.embrapa.br/pfb/index.php/pfb/article/view/1230/521Copyright (c) 2016 Juliana Carneiro Gonçalves, Samuel de Padua Chaves e Carvalho, Antonio Donizette de Oliveira, Lucas Rezende Gomidehttps://creativecommons.org/licenses/by-nc-nd/4.0info:eu-repo/semantics/openAccessGonçalves, Juliana CarneiroCarvalho, Samuel de Padua Chaves eOliveira, Antonio Donizette deGomide, Lucas Rezende2017-04-28T14:13:12Zoai:pfb.cnpf.embrapa.br/pfb:article/1230Revistahttps://pfb.cnpf.embrapa.br/pfb/index.php/pfb/PUBhttps://pfb.cnpf.embrapa.br/pfb/index.php/pfb/oaipfb@embrapa.br || revista.pfb@gmail.com || patricia.mattos@embrapa.br1983-26051809-3647opendoar:2017-04-28T14:13:12Pesquisa Florestal Brasileira (Online) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false |
dc.title.none.fl_str_mv |
Comparing logistic function and clutter prognosis models Comparação dos modelos prognósticos de Clutter e da função Logística |
title |
Comparing logistic function and clutter prognosis models |
spellingShingle |
Comparing logistic function and clutter prognosis models Gonçalves, Juliana Carneiro Forest Yield Forests Biometric Non-linear Models Crescimento e Produção Florestal Biometria Florestal Modelos Não-Lineares. |
title_short |
Comparing logistic function and clutter prognosis models |
title_full |
Comparing logistic function and clutter prognosis models |
title_fullStr |
Comparing logistic function and clutter prognosis models |
title_full_unstemmed |
Comparing logistic function and clutter prognosis models |
title_sort |
Comparing logistic function and clutter prognosis models |
author |
Gonçalves, Juliana Carneiro |
author_facet |
Gonçalves, Juliana Carneiro Carvalho, Samuel de Padua Chaves e Oliveira, Antonio Donizette de Gomide, Lucas Rezende |
author_role |
author |
author2 |
Carvalho, Samuel de Padua Chaves e Oliveira, Antonio Donizette de Gomide, Lucas Rezende |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Gonçalves, Juliana Carneiro Carvalho, Samuel de Padua Chaves e Oliveira, Antonio Donizette de Gomide, Lucas Rezende |
dc.subject.por.fl_str_mv |
Forest Yield Forests Biometric Non-linear Models Crescimento e Produção Florestal Biometria Florestal Modelos Não-Lineares. |
topic |
Forest Yield Forests Biometric Non-linear Models Crescimento e Produção Florestal Biometria Florestal Modelos Não-Lineares. |
description |
The aim this study was to compare the performance of two non-linear models and the classic Clutter’s system on volume prognosis in fully stocking Eucalyptus stands from Espírito Santo, Brazil. Mean standard error percentual, Akaike and Bayesian criteria, supplemented by graphical analysis were used to evaluate models fit. Models performance presented better results up to four times when covariables were included in the adjustment process. It was observed that logistic function with covariables was superior than it´s original form and more appropriate then Clutter’s system. The results showed better results of non-linear system to modeling forest growth and yield indicating forest rotation near five years. These results are consistent with Eucalyptus plantation for biomass in Brazil. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-09-30 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://pfb.cnpf.embrapa.br/pfb/index.php/pfb/article/view/1230 10.4336/2016.pfb.36.87.1230 |
url |
https://pfb.cnpf.embrapa.br/pfb/index.php/pfb/article/view/1230 |
identifier_str_mv |
10.4336/2016.pfb.36.87.1230 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://pfb.cnpf.embrapa.br/pfb/index.php/pfb/article/view/1230/521 |
dc.rights.driver.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Embrapa Florestas |
publisher.none.fl_str_mv |
Embrapa Florestas |
dc.source.none.fl_str_mv |
Pesquisa Florestal Brasileira; v. 36 n. 87 (2016): jul./set.; 311-317 Pesquisa Florestal Brasileira; Vol. 36 No. 87 (2016): jul./set.; 311-317 1983-2605 1809-3647 reponame:Pesquisa Florestal Brasileira (Online) instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa) instacron:EMBRAPA |
instname_str |
Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
instacron_str |
EMBRAPA |
institution |
EMBRAPA |
reponame_str |
Pesquisa Florestal Brasileira (Online) |
collection |
Pesquisa Florestal Brasileira (Online) |
repository.name.fl_str_mv |
Pesquisa Florestal Brasileira (Online) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
repository.mail.fl_str_mv |
pfb@embrapa.br || revista.pfb@gmail.com || patricia.mattos@embrapa.br |
_version_ |
1783370936015126528 |