A semi-automated SNP-based approach for contaminant identification in biparental Polyploid Populations of tropical forage grasses.

Detalhes bibliográficos
Autor(a) principal: MARTINS, F. B.
Data de Publicação: 2021
Outros Autores: MORAES, A. C. L., AONO, A. H., FERREIRA, R. C. U., CHIARI, L., SIMEÃO, R. M., BARRIOS, S. C. L., SANTOS, M. F., JANK, L., VALLE, C. B. do, VIGNA, B. B. Z., SOUZA, A. P. DE
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
Texto Completo: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1137227
https://doi.org/10.3389/fpls.2021.737919
Resumo: Artificial hybridization plays a fundamental role in plant breeding programs since it generates new genotypic combinations that can result in desirable phenotypes. Depending on the species and mode of reproduction, controlled crosses may be challenging, and contaminating individuals can be introduced accidentally. In this context, the identification of such contaminants is important to avoid compromising further selection cycles, as well as genetic and genomic studies. The main objective of this work was to propose an automated multivariate methodology for the detection and classification of putative contaminants, including apomictic clones (ACs), self-fertilized individuals, half-siblings (HSs), and full contaminants (FCs), in biparental polyploid progenies of tropical forage grasses. We established a pipeline to identify contaminants in genotyping-by-sequencing (GBS) data encoded as allele dosages of single nucleotide polymorphism (SNP) markers by integrating principal component analysis (PCA), genotypic analysis (GA) measures based on Mendelian segregation, and clustering analysis (CA). The combination of these methods allowed for the correct identification of all contaminants in all simulated progenies and the detection of putative contaminants in three real progenies of tropical forage grasses, providing an easy and promising methodology for the identification of contaminants in biparental progenies of tetraploid and hexaploid species. The proposed pipeline was made available through the polyCID Shiny app and can be easily coupled with traditional genetic approaches, such as linkage map construction, thereby increasing the efficiency of breeding programs.
id EMBR_033ccdf3ddacf40bdee3bfd12b73cd99
oai_identifier_str oai:www.alice.cnptia.embrapa.br:doc/1137227
network_acronym_str EMBR
network_name_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository_id_str 2154
spelling A semi-automated SNP-based approach for contaminant identification in biparental Polyploid Populations of tropical forage grasses.GBSApomictic clonesSelf fertilizationHalf siblingAllele dosageClustering analysisShinyPrincipal component analysisArtificial hybridization plays a fundamental role in plant breeding programs since it generates new genotypic combinations that can result in desirable phenotypes. Depending on the species and mode of reproduction, controlled crosses may be challenging, and contaminating individuals can be introduced accidentally. In this context, the identification of such contaminants is important to avoid compromising further selection cycles, as well as genetic and genomic studies. The main objective of this work was to propose an automated multivariate methodology for the detection and classification of putative contaminants, including apomictic clones (ACs), self-fertilized individuals, half-siblings (HSs), and full contaminants (FCs), in biparental polyploid progenies of tropical forage grasses. We established a pipeline to identify contaminants in genotyping-by-sequencing (GBS) data encoded as allele dosages of single nucleotide polymorphism (SNP) markers by integrating principal component analysis (PCA), genotypic analysis (GA) measures based on Mendelian segregation, and clustering analysis (CA). The combination of these methods allowed for the correct identification of all contaminants in all simulated progenies and the detection of putative contaminants in three real progenies of tropical forage grasses, providing an easy and promising methodology for the identification of contaminants in biparental progenies of tetraploid and hexaploid species. The proposed pipeline was made available through the polyCID Shiny app and can be easily coupled with traditional genetic approaches, such as linkage map construction, thereby increasing the efficiency of breeding programs.FELIPE BITENCOURT MARTINS, Center for Molecular Biology and Genetic EngineeringALINE COSTA LIMA MORAES, Center for Molecular Biology and Genetic EngineeringALEXANDRE HILD AONO, Center for Molecular Biology and Genetic EngineeringREBECCA CAROLINE ULBRICHT FERREIRA, Center for Molecular Biology and Genetic EngineeringLUCIMARA CHIARI, CNPGCROSANGELA MARIA SIMEAO, CNPGCSANZIO CARVALHO LIMA BARRIOS, CNPGCMATEUS FIGUEIREDO SANTOS, CNPGCLIANA JANK, CNPGCCACILDA BORGES DO VALLE, CNPGCBIANCA BACCILI ZANOTTO VIGNA, CPPSEANETE PEREIRA DE SOUZA, Center for Molecular Biology and Genetic EngineeringUNICAMP.MARTINS, F. B.MORAES, A. C. L.AONO, A. H.FERREIRA, R. C. U.CHIARI, L.SIMEÃO, R. M.BARRIOS, S. C. L.SANTOS, M. F.JANK, L.VALLE, C. B. doVIGNA, B. B. Z.SOUZA, A. P. DE2021-12-07T14:00:42Z2021-12-07T14:00:42Z2021-12-072021info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article19 p.Frontiers in Plant Science, v.12, article 737919, 2021.http://www.alice.cnptia.embrapa.br/alice/handle/doc/1137227https://doi.org/10.3389/fpls.2021.737919enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2021-12-07T14:00:51Zoai:www.alice.cnptia.embrapa.br:doc/1137227Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542021-12-07T14:00:51falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542021-12-07T14:00:51Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv A semi-automated SNP-based approach for contaminant identification in biparental Polyploid Populations of tropical forage grasses.
title A semi-automated SNP-based approach for contaminant identification in biparental Polyploid Populations of tropical forage grasses.
spellingShingle A semi-automated SNP-based approach for contaminant identification in biparental Polyploid Populations of tropical forage grasses.
MARTINS, F. B.
GBS
Apomictic clones
Self fertilization
Half sibling
Allele dosage
Clustering analysis
Shiny
Principal component analysis
title_short A semi-automated SNP-based approach for contaminant identification in biparental Polyploid Populations of tropical forage grasses.
title_full A semi-automated SNP-based approach for contaminant identification in biparental Polyploid Populations of tropical forage grasses.
title_fullStr A semi-automated SNP-based approach for contaminant identification in biparental Polyploid Populations of tropical forage grasses.
title_full_unstemmed A semi-automated SNP-based approach for contaminant identification in biparental Polyploid Populations of tropical forage grasses.
title_sort A semi-automated SNP-based approach for contaminant identification in biparental Polyploid Populations of tropical forage grasses.
author MARTINS, F. B.
author_facet MARTINS, F. B.
MORAES, A. C. L.
AONO, A. H.
FERREIRA, R. C. U.
CHIARI, L.
SIMEÃO, R. M.
BARRIOS, S. C. L.
SANTOS, M. F.
JANK, L.
VALLE, C. B. do
VIGNA, B. B. Z.
SOUZA, A. P. DE
author_role author
author2 MORAES, A. C. L.
AONO, A. H.
FERREIRA, R. C. U.
CHIARI, L.
SIMEÃO, R. M.
BARRIOS, S. C. L.
SANTOS, M. F.
JANK, L.
VALLE, C. B. do
VIGNA, B. B. Z.
SOUZA, A. P. DE
author2_role author
author
author
author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv FELIPE BITENCOURT MARTINS, Center for Molecular Biology and Genetic Engineering
ALINE COSTA LIMA MORAES, Center for Molecular Biology and Genetic Engineering
ALEXANDRE HILD AONO, Center for Molecular Biology and Genetic Engineering
REBECCA CAROLINE ULBRICHT FERREIRA, Center for Molecular Biology and Genetic Engineering
LUCIMARA CHIARI, CNPGC
ROSANGELA MARIA SIMEAO, CNPGC
SANZIO CARVALHO LIMA BARRIOS, CNPGC
MATEUS FIGUEIREDO SANTOS, CNPGC
LIANA JANK, CNPGC
CACILDA BORGES DO VALLE, CNPGC
BIANCA BACCILI ZANOTTO VIGNA, CPPSE
ANETE PEREIRA DE SOUZA, Center for Molecular Biology and Genetic Engineering
UNICAMP.
dc.contributor.author.fl_str_mv MARTINS, F. B.
MORAES, A. C. L.
AONO, A. H.
FERREIRA, R. C. U.
CHIARI, L.
SIMEÃO, R. M.
BARRIOS, S. C. L.
SANTOS, M. F.
JANK, L.
VALLE, C. B. do
VIGNA, B. B. Z.
SOUZA, A. P. DE
dc.subject.por.fl_str_mv GBS
Apomictic clones
Self fertilization
Half sibling
Allele dosage
Clustering analysis
Shiny
Principal component analysis
topic GBS
Apomictic clones
Self fertilization
Half sibling
Allele dosage
Clustering analysis
Shiny
Principal component analysis
description Artificial hybridization plays a fundamental role in plant breeding programs since it generates new genotypic combinations that can result in desirable phenotypes. Depending on the species and mode of reproduction, controlled crosses may be challenging, and contaminating individuals can be introduced accidentally. In this context, the identification of such contaminants is important to avoid compromising further selection cycles, as well as genetic and genomic studies. The main objective of this work was to propose an automated multivariate methodology for the detection and classification of putative contaminants, including apomictic clones (ACs), self-fertilized individuals, half-siblings (HSs), and full contaminants (FCs), in biparental polyploid progenies of tropical forage grasses. We established a pipeline to identify contaminants in genotyping-by-sequencing (GBS) data encoded as allele dosages of single nucleotide polymorphism (SNP) markers by integrating principal component analysis (PCA), genotypic analysis (GA) measures based on Mendelian segregation, and clustering analysis (CA). The combination of these methods allowed for the correct identification of all contaminants in all simulated progenies and the detection of putative contaminants in three real progenies of tropical forage grasses, providing an easy and promising methodology for the identification of contaminants in biparental progenies of tetraploid and hexaploid species. The proposed pipeline was made available through the polyCID Shiny app and can be easily coupled with traditional genetic approaches, such as linkage map construction, thereby increasing the efficiency of breeding programs.
publishDate 2021
dc.date.none.fl_str_mv 2021-12-07T14:00:42Z
2021-12-07T14:00:42Z
2021-12-07
2021
dc.type.driver.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv Frontiers in Plant Science, v.12, article 737919, 2021.
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1137227
https://doi.org/10.3389/fpls.2021.737919
identifier_str_mv Frontiers in Plant Science, v.12, article 737919, 2021.
url http://www.alice.cnptia.embrapa.br/alice/handle/doc/1137227
https://doi.org/10.3389/fpls.2021.737919
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 19 p.
dc.source.none.fl_str_mv reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
collection Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository.name.fl_str_mv Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv cg-riaa@embrapa.br
_version_ 1794503513448906752