Genetic evaluation and selection in jatropha curcas through frequentist and bayesian inferences.

Detalhes bibliográficos
Autor(a) principal: EVANGELISTA, J. S. P. C.
Data de Publicação: 2022
Outros Autores: PEIXOTO, M. A., COELHO, I., ALVES, R., RESENDE, M. D. V. de, SILVA, F. F. e, LAVIOLA, B., BHERING, L. L.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
Texto Completo: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1150826
https://doi.org/10.1590/1678-4499.20210262
Resumo: An accurate and efficient statistical method for genetic evaluation is a key requirement for progress in any breeding program. Thus, the present study aimed to evaluate the performance of Frequentist and Bayesian inferences for repeated measures analysis in Jatropha curcas breeding. To this end, 730 individuals from 73 half-sib families were evaluated for grain yield trait, over six crop years. Frequentist and Bayesian analyses were made considering repeatability models with different residual variance structures. Variance components were estimated through restricted maximum likelihood (REML) and Markov Chain Monte Carlo (MCMC). Genetic values were predicted through best linear unbiased prediction (BLUP) and estimated through MCMC. Variance components and genetic and non-genetic parameters estimated by the Frequentist inference presented values similar to those estimated by the Bayesian inference. The selective accuracy presented high magnitude (0.84) by the Frequentist and Bayesian inferences, indicating high reliability. Confidence and highest posterior density (HPD) intervals were similar for the genetic parameters, however the HPD intervals range was slightly short. This study highlighted the importance of testing the residual variance structure and pointed out that the Frequentist and Bayesian inferences presented similar results when using non-informative prior. Then, both inferences can be efficiently applied in Jatropha curcas breeding.
id EMBR_0418c1c7c8830ea3c6259be4e734e582
oai_identifier_str oai:www.alice.cnptia.embrapa.br:doc/1150826
network_acronym_str EMBR
network_name_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository_id_str 2154
spelling Genetic evaluation and selection in jatropha curcas through frequentist and bayesian inferences.Genetic variancePlant selection guidesBayesian theoryPlant breedingJatrophaAn accurate and efficient statistical method for genetic evaluation is a key requirement for progress in any breeding program. Thus, the present study aimed to evaluate the performance of Frequentist and Bayesian inferences for repeated measures analysis in Jatropha curcas breeding. To this end, 730 individuals from 73 half-sib families were evaluated for grain yield trait, over six crop years. Frequentist and Bayesian analyses were made considering repeatability models with different residual variance structures. Variance components were estimated through restricted maximum likelihood (REML) and Markov Chain Monte Carlo (MCMC). Genetic values were predicted through best linear unbiased prediction (BLUP) and estimated through MCMC. Variance components and genetic and non-genetic parameters estimated by the Frequentist inference presented values similar to those estimated by the Bayesian inference. The selective accuracy presented high magnitude (0.84) by the Frequentist and Bayesian inferences, indicating high reliability. Confidence and highest posterior density (HPD) intervals were similar for the genetic parameters, however the HPD intervals range was slightly short. This study highlighted the importance of testing the residual variance structure and pointed out that the Frequentist and Bayesian inferences presented similar results when using non-informative prior. Then, both inferences can be efficiently applied in Jatropha curcas breeding.JENIFFER SANTANA PINTO COELHO EVANGELISTA, UNIVERSIDADE FEDERAL DE VIÇOSA; MARCOS ANTONIO PEIXOTO, UNIVERSIDADE FEDERAL DE VIÇOSA; IGOR COELHO, UNIVERSIDADE FEDERAL DE VIÇOSA; RODRIGO ALVES, UNIVERSIDADE FEDERAL DE VIÇOSA; MARCOS DEON VILELA DE RESENDE, CNPCa; FABYANO FONSECA E SILVA, UNIVERSIDADE FEDERAL DE VIÇOSA; BRUNO LAVIOLA, EMBRAPA AGROENERGIA; LEONARDO LOPES BHERING, UNIVERSIDADE FEDERAL DE VIÇOSA.EVANGELISTA, J. S. P. C.PEIXOTO, M. A.COELHO, I.ALVES, R.RESENDE, M. D. V. deSILVA, F. F. eLAVIOLA, B.BHERING, L. L.2023-01-10T13:01:25Z2023-01-10T13:01:25Z2023-01-102022info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article12 p.Bragantia, v. 81, 2022.http://www.alice.cnptia.embrapa.br/alice/handle/doc/1150826https://doi.org/10.1590/1678-4499.20210262enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2023-01-10T13:01:25Zoai:www.alice.cnptia.embrapa.br:doc/1150826Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542023-01-10T13:01:25Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv Genetic evaluation and selection in jatropha curcas through frequentist and bayesian inferences.
title Genetic evaluation and selection in jatropha curcas through frequentist and bayesian inferences.
spellingShingle Genetic evaluation and selection in jatropha curcas through frequentist and bayesian inferences.
EVANGELISTA, J. S. P. C.
Genetic variance
Plant selection guides
Bayesian theory
Plant breeding
Jatropha
title_short Genetic evaluation and selection in jatropha curcas through frequentist and bayesian inferences.
title_full Genetic evaluation and selection in jatropha curcas through frequentist and bayesian inferences.
title_fullStr Genetic evaluation and selection in jatropha curcas through frequentist and bayesian inferences.
title_full_unstemmed Genetic evaluation and selection in jatropha curcas through frequentist and bayesian inferences.
title_sort Genetic evaluation and selection in jatropha curcas through frequentist and bayesian inferences.
author EVANGELISTA, J. S. P. C.
author_facet EVANGELISTA, J. S. P. C.
PEIXOTO, M. A.
COELHO, I.
ALVES, R.
RESENDE, M. D. V. de
SILVA, F. F. e
LAVIOLA, B.
BHERING, L. L.
author_role author
author2 PEIXOTO, M. A.
COELHO, I.
ALVES, R.
RESENDE, M. D. V. de
SILVA, F. F. e
LAVIOLA, B.
BHERING, L. L.
author2_role author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv JENIFFER SANTANA PINTO COELHO EVANGELISTA, UNIVERSIDADE FEDERAL DE VIÇOSA; MARCOS ANTONIO PEIXOTO, UNIVERSIDADE FEDERAL DE VIÇOSA; IGOR COELHO, UNIVERSIDADE FEDERAL DE VIÇOSA; RODRIGO ALVES, UNIVERSIDADE FEDERAL DE VIÇOSA; MARCOS DEON VILELA DE RESENDE, CNPCa; FABYANO FONSECA E SILVA, UNIVERSIDADE FEDERAL DE VIÇOSA; BRUNO LAVIOLA, EMBRAPA AGROENERGIA; LEONARDO LOPES BHERING, UNIVERSIDADE FEDERAL DE VIÇOSA.
dc.contributor.author.fl_str_mv EVANGELISTA, J. S. P. C.
PEIXOTO, M. A.
COELHO, I.
ALVES, R.
RESENDE, M. D. V. de
SILVA, F. F. e
LAVIOLA, B.
BHERING, L. L.
dc.subject.por.fl_str_mv Genetic variance
Plant selection guides
Bayesian theory
Plant breeding
Jatropha
topic Genetic variance
Plant selection guides
Bayesian theory
Plant breeding
Jatropha
description An accurate and efficient statistical method for genetic evaluation is a key requirement for progress in any breeding program. Thus, the present study aimed to evaluate the performance of Frequentist and Bayesian inferences for repeated measures analysis in Jatropha curcas breeding. To this end, 730 individuals from 73 half-sib families were evaluated for grain yield trait, over six crop years. Frequentist and Bayesian analyses were made considering repeatability models with different residual variance structures. Variance components were estimated through restricted maximum likelihood (REML) and Markov Chain Monte Carlo (MCMC). Genetic values were predicted through best linear unbiased prediction (BLUP) and estimated through MCMC. Variance components and genetic and non-genetic parameters estimated by the Frequentist inference presented values similar to those estimated by the Bayesian inference. The selective accuracy presented high magnitude (0.84) by the Frequentist and Bayesian inferences, indicating high reliability. Confidence and highest posterior density (HPD) intervals were similar for the genetic parameters, however the HPD intervals range was slightly short. This study highlighted the importance of testing the residual variance structure and pointed out that the Frequentist and Bayesian inferences presented similar results when using non-informative prior. Then, both inferences can be efficiently applied in Jatropha curcas breeding.
publishDate 2022
dc.date.none.fl_str_mv 2022
2023-01-10T13:01:25Z
2023-01-10T13:01:25Z
2023-01-10
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv Bragantia, v. 81, 2022.
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1150826
https://doi.org/10.1590/1678-4499.20210262
identifier_str_mv Bragantia, v. 81, 2022.
url http://www.alice.cnptia.embrapa.br/alice/handle/doc/1150826
https://doi.org/10.1590/1678-4499.20210262
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 12 p.
dc.source.none.fl_str_mv reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
collection Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository.name.fl_str_mv Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv cg-riaa@embrapa.br
_version_ 1817695661249789952