Genome and environment based prediction models and methods of complex traits incorporating genotype × environment interaction.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , , , , , , , , , |
Tipo de documento: | Capítulo de livro |
Idioma: | eng |
Título da fonte: | Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
Texto Completo: | http://www.alice.cnptia.embrapa.br/alice/handle/doc/1143533 https://doi.org/10.1007/978-1-0716-2205-6_9 |
Resumo: | Genomic-enabled prediction models are of paramount importance for the successful implementation of genomic selection (GS) based on breeding values. As opposed to animal breeding, plant breeding includes extensive multienvironment and multiyear field trial data. Hence, genomic-enabled prediction models should include genotype × environment (G × E) interaction, which most of the time increases the prediction performance when the response of lines are different from environment to environment. In this chapter, we describe a historical timeline since 2012 related to advances of the GS models that take into account G × E interaction. We describe theoretical and practical aspects of those GS models, including the gains in prediction performance when including G × E structures for both complex continuous and categorical scale traits. Then, we detailed and explained the main G × E genomic prediction models for complex traits measured in continuous and noncontinuous (categorical) scale. Related to G × E interaction models this review also examine the analyses of the information generated with high-throughput phenotype data (phenomic) and the joint analyses of multitrait and multienvironment field trial data that is also employed in the general assessment of multitrait G × E interaction. The inclusion of nongenomic data in increasing the accuracy and biological reliability of the G × E approach is also outlined. We show the recent advances in large-scale envirotyping (enviromics), and how the use of mechanistic computational modeling can derive the crop growth and development aspects useful for predicting phenotypes and explaining G × E. |
id |
EMBR_1333125b624efa1378bbff9e30bc14d3 |
---|---|
oai_identifier_str |
oai:www.alice.cnptia.embrapa.br:doc/1143533 |
network_acronym_str |
EMBR |
network_name_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository_id_str |
2154 |
spelling |
Genome and environment based prediction models and methods of complex traits incorporating genotype × environment interaction.Genomic selectionGenome-enabled predictionModels with G x E interactionMelhoramento Genético VegetalGenótipoInteração GenéticaGenomeGenomicsPlant breedingGenotype-environment interactionGenomic-enabled prediction models are of paramount importance for the successful implementation of genomic selection (GS) based on breeding values. As opposed to animal breeding, plant breeding includes extensive multienvironment and multiyear field trial data. Hence, genomic-enabled prediction models should include genotype × environment (G × E) interaction, which most of the time increases the prediction performance when the response of lines are different from environment to environment. In this chapter, we describe a historical timeline since 2012 related to advances of the GS models that take into account G × E interaction. We describe theoretical and practical aspects of those GS models, including the gains in prediction performance when including G × E structures for both complex continuous and categorical scale traits. Then, we detailed and explained the main G × E genomic prediction models for complex traits measured in continuous and noncontinuous (categorical) scale. Related to G × E interaction models this review also examine the analyses of the information generated with high-throughput phenotype data (phenomic) and the joint analyses of multitrait and multienvironment field trial data that is also employed in the general assessment of multitrait G × E interaction. The inclusion of nongenomic data in increasing the accuracy and biological reliability of the G × E approach is also outlined. We show the recent advances in large-scale envirotyping (enviromics), and how the use of mechanistic computational modeling can derive the crop growth and development aspects useful for predicting phenotypes and explaining G × E.JOSE CROSSA, CIMMYT; OSVAL ANTONIO MONTESINOS-LOPEZ, UNIVERSIDAD DE COLIMA, México; PAULINO PEREZ-RODRIGUEZ, COLEGIO DE POSTGRADUADOS, Montecillos-Mexico; GERMANO COSTA-NETO, ESALQ; ROBERTO FRITSCHE-NETO, ESALQ; RODOMIRO ORTIZ, SWEDISH UNIVERSITY OF AGRICULTURAL SCIENCES, Alnarp-Sweden; JOHANNES W. R. MARTINI, CIMMYT; MORTEN LILLEMO, NORWEGIAN UNIVERSITY OF LIFE SCIENCES, Norway; ABELARDO MONTESINOS-LOPEZ, CENTRO DE INVESTIGACIÓN EN MATEMÁTICAS, Guanajuato-Mexico; DIEGO JARQUIN, UNIVERSITY OF NEBRASKA, Lincoln-NE; FLAVIO BRESEGHELLO, CNPAF; JAIME CUEVAS, UNIVERSIDAD DE QUINTANA ROO, Quintana Roo-Mexico; RENAUD RINCENT, INRAE, Clermont-Ferrand-France.CROSSA, J.MONTESINOS-LÓPEZ, O. A.PÉREZ-RODRÍGUEZ, P.COSTA-NETO, G.FRITSCHE-NETO, R.ORTIZ, R.MARTINI, J. W. R.LILLEMO, M.MONTESINOS-LÓPEZ, A.JARQUIN, D.BRESEGHELLO, F.CUEVAS, J.RINCENT, R.2022-05-30T05:00:48Z2022-05-30T05:00:48Z2022-05-292022info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bookPartp. 245-283.In: AHMADI, N.; BARTHOLOME, J. (ed.). Genomic prediction of complex traits: methods and protocols. New York: Humana Press, 2022.978-1-0716-2205-6http://www.alice.cnptia.embrapa.br/alice/handle/doc/1143533https://doi.org/10.1007/978-1-0716-2205-6_9eng(Methods in Molecular Biology).info:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2022-05-30T05:00:56Zoai:www.alice.cnptia.embrapa.br:doc/1143533Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542022-05-30T05:00:56Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false |
dc.title.none.fl_str_mv |
Genome and environment based prediction models and methods of complex traits incorporating genotype × environment interaction. |
title |
Genome and environment based prediction models and methods of complex traits incorporating genotype × environment interaction. |
spellingShingle |
Genome and environment based prediction models and methods of complex traits incorporating genotype × environment interaction. CROSSA, J. Genomic selection Genome-enabled prediction Models with G x E interaction Melhoramento Genético Vegetal Genótipo Interação Genética Genome Genomics Plant breeding Genotype-environment interaction |
title_short |
Genome and environment based prediction models and methods of complex traits incorporating genotype × environment interaction. |
title_full |
Genome and environment based prediction models and methods of complex traits incorporating genotype × environment interaction. |
title_fullStr |
Genome and environment based prediction models and methods of complex traits incorporating genotype × environment interaction. |
title_full_unstemmed |
Genome and environment based prediction models and methods of complex traits incorporating genotype × environment interaction. |
title_sort |
Genome and environment based prediction models and methods of complex traits incorporating genotype × environment interaction. |
author |
CROSSA, J. |
author_facet |
CROSSA, J. MONTESINOS-LÓPEZ, O. A. PÉREZ-RODRÍGUEZ, P. COSTA-NETO, G. FRITSCHE-NETO, R. ORTIZ, R. MARTINI, J. W. R. LILLEMO, M. MONTESINOS-LÓPEZ, A. JARQUIN, D. BRESEGHELLO, F. CUEVAS, J. RINCENT, R. |
author_role |
author |
author2 |
MONTESINOS-LÓPEZ, O. A. PÉREZ-RODRÍGUEZ, P. COSTA-NETO, G. FRITSCHE-NETO, R. ORTIZ, R. MARTINI, J. W. R. LILLEMO, M. MONTESINOS-LÓPEZ, A. JARQUIN, D. BRESEGHELLO, F. CUEVAS, J. RINCENT, R. |
author2_role |
author author author author author author author author author author author author |
dc.contributor.none.fl_str_mv |
JOSE CROSSA, CIMMYT; OSVAL ANTONIO MONTESINOS-LOPEZ, UNIVERSIDAD DE COLIMA, México; PAULINO PEREZ-RODRIGUEZ, COLEGIO DE POSTGRADUADOS, Montecillos-Mexico; GERMANO COSTA-NETO, ESALQ; ROBERTO FRITSCHE-NETO, ESALQ; RODOMIRO ORTIZ, SWEDISH UNIVERSITY OF AGRICULTURAL SCIENCES, Alnarp-Sweden; JOHANNES W. R. MARTINI, CIMMYT; MORTEN LILLEMO, NORWEGIAN UNIVERSITY OF LIFE SCIENCES, Norway; ABELARDO MONTESINOS-LOPEZ, CENTRO DE INVESTIGACIÓN EN MATEMÁTICAS, Guanajuato-Mexico; DIEGO JARQUIN, UNIVERSITY OF NEBRASKA, Lincoln-NE; FLAVIO BRESEGHELLO, CNPAF; JAIME CUEVAS, UNIVERSIDAD DE QUINTANA ROO, Quintana Roo-Mexico; RENAUD RINCENT, INRAE, Clermont-Ferrand-France. |
dc.contributor.author.fl_str_mv |
CROSSA, J. MONTESINOS-LÓPEZ, O. A. PÉREZ-RODRÍGUEZ, P. COSTA-NETO, G. FRITSCHE-NETO, R. ORTIZ, R. MARTINI, J. W. R. LILLEMO, M. MONTESINOS-LÓPEZ, A. JARQUIN, D. BRESEGHELLO, F. CUEVAS, J. RINCENT, R. |
dc.subject.por.fl_str_mv |
Genomic selection Genome-enabled prediction Models with G x E interaction Melhoramento Genético Vegetal Genótipo Interação Genética Genome Genomics Plant breeding Genotype-environment interaction |
topic |
Genomic selection Genome-enabled prediction Models with G x E interaction Melhoramento Genético Vegetal Genótipo Interação Genética Genome Genomics Plant breeding Genotype-environment interaction |
description |
Genomic-enabled prediction models are of paramount importance for the successful implementation of genomic selection (GS) based on breeding values. As opposed to animal breeding, plant breeding includes extensive multienvironment and multiyear field trial data. Hence, genomic-enabled prediction models should include genotype × environment (G × E) interaction, which most of the time increases the prediction performance when the response of lines are different from environment to environment. In this chapter, we describe a historical timeline since 2012 related to advances of the GS models that take into account G × E interaction. We describe theoretical and practical aspects of those GS models, including the gains in prediction performance when including G × E structures for both complex continuous and categorical scale traits. Then, we detailed and explained the main G × E genomic prediction models for complex traits measured in continuous and noncontinuous (categorical) scale. Related to G × E interaction models this review also examine the analyses of the information generated with high-throughput phenotype data (phenomic) and the joint analyses of multitrait and multienvironment field trial data that is also employed in the general assessment of multitrait G × E interaction. The inclusion of nongenomic data in increasing the accuracy and biological reliability of the G × E approach is also outlined. We show the recent advances in large-scale envirotyping (enviromics), and how the use of mechanistic computational modeling can derive the crop growth and development aspects useful for predicting phenotypes and explaining G × E. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-05-30T05:00:48Z 2022-05-30T05:00:48Z 2022-05-29 2022 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/bookPart |
format |
bookPart |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
In: AHMADI, N.; BARTHOLOME, J. (ed.). Genomic prediction of complex traits: methods and protocols. New York: Humana Press, 2022. 978-1-0716-2205-6 http://www.alice.cnptia.embrapa.br/alice/handle/doc/1143533 https://doi.org/10.1007/978-1-0716-2205-6_9 |
identifier_str_mv |
In: AHMADI, N.; BARTHOLOME, J. (ed.). Genomic prediction of complex traits: methods and protocols. New York: Humana Press, 2022. 978-1-0716-2205-6 |
url |
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1143533 https://doi.org/10.1007/978-1-0716-2205-6_9 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
(Methods in Molecular Biology). |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
p. 245-283. |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa) instacron:EMBRAPA |
instname_str |
Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
instacron_str |
EMBRAPA |
institution |
EMBRAPA |
reponame_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
collection |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository.name.fl_str_mv |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
repository.mail.fl_str_mv |
cg-riaa@embrapa.br |
_version_ |
1822721559693885440 |