Genome and environment based prediction models and methods of complex traits incorporating genotype × environment interaction.

Detalhes bibliográficos
Autor(a) principal: CROSSA, J.
Data de Publicação: 2022
Outros Autores: MONTESINOS-LÓPEZ, O. A., PÉREZ-RODRÍGUEZ, P., COSTA-NETO, G., FRITSCHE-NETO, R., ORTIZ, R., MARTINI, J. W. R., LILLEMO, M., MONTESINOS-LÓPEZ, A., JARQUIN, D., BRESEGHELLO, F., CUEVAS, J., RINCENT, R.
Tipo de documento: Capítulo de livro
Idioma: eng
Título da fonte: Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
Texto Completo: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1143533
https://doi.org/10.1007/978-1-0716-2205-6_9
Resumo: Genomic-enabled prediction models are of paramount importance for the successful implementation of genomic selection (GS) based on breeding values. As opposed to animal breeding, plant breeding includes extensive multienvironment and multiyear field trial data. Hence, genomic-enabled prediction models should include genotype × environment (G × E) interaction, which most of the time increases the prediction performance when the response of lines are different from environment to environment. In this chapter, we describe a historical timeline since 2012 related to advances of the GS models that take into account G × E interaction. We describe theoretical and practical aspects of those GS models, including the gains in prediction performance when including G × E structures for both complex continuous and categorical scale traits. Then, we detailed and explained the main G × E genomic prediction models for complex traits measured in continuous and noncontinuous (categorical) scale. Related to G × E interaction models this review also examine the analyses of the information generated with high-throughput phenotype data (phenomic) and the joint analyses of multitrait and multienvironment field trial data that is also employed in the general assessment of multitrait G × E interaction. The inclusion of nongenomic data in increasing the accuracy and biological reliability of the G × E approach is also outlined. We show the recent advances in large-scale envirotyping (enviromics), and how the use of mechanistic computational modeling can derive the crop growth and development aspects useful for predicting phenotypes and explaining G × E.
id EMBR_1333125b624efa1378bbff9e30bc14d3
oai_identifier_str oai:www.alice.cnptia.embrapa.br:doc/1143533
network_acronym_str EMBR
network_name_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository_id_str 2154
spelling Genome and environment based prediction models and methods of complex traits incorporating genotype × environment interaction.Genomic selectionGenome-enabled predictionModels with G x E interactionMelhoramento Genético VegetalGenótipoInteração GenéticaGenomeGenomicsPlant breedingGenotype-environment interactionGenomic-enabled prediction models are of paramount importance for the successful implementation of genomic selection (GS) based on breeding values. As opposed to animal breeding, plant breeding includes extensive multienvironment and multiyear field trial data. Hence, genomic-enabled prediction models should include genotype × environment (G × E) interaction, which most of the time increases the prediction performance when the response of lines are different from environment to environment. In this chapter, we describe a historical timeline since 2012 related to advances of the GS models that take into account G × E interaction. We describe theoretical and practical aspects of those GS models, including the gains in prediction performance when including G × E structures for both complex continuous and categorical scale traits. Then, we detailed and explained the main G × E genomic prediction models for complex traits measured in continuous and noncontinuous (categorical) scale. Related to G × E interaction models this review also examine the analyses of the information generated with high-throughput phenotype data (phenomic) and the joint analyses of multitrait and multienvironment field trial data that is also employed in the general assessment of multitrait G × E interaction. The inclusion of nongenomic data in increasing the accuracy and biological reliability of the G × E approach is also outlined. We show the recent advances in large-scale envirotyping (enviromics), and how the use of mechanistic computational modeling can derive the crop growth and development aspects useful for predicting phenotypes and explaining G × E.JOSE CROSSA, CIMMYT; OSVAL ANTONIO MONTESINOS-LOPEZ, UNIVERSIDAD DE COLIMA, México; PAULINO PEREZ-RODRIGUEZ, COLEGIO DE POSTGRADUADOS, Montecillos-Mexico; GERMANO COSTA-NETO, ESALQ; ROBERTO FRITSCHE-NETO, ESALQ; RODOMIRO ORTIZ, SWEDISH UNIVERSITY OF AGRICULTURAL SCIENCES, Alnarp-Sweden; JOHANNES W. R. MARTINI, CIMMYT; MORTEN LILLEMO, NORWEGIAN UNIVERSITY OF LIFE SCIENCES, Norway; ABELARDO MONTESINOS-LOPEZ, CENTRO DE INVESTIGACIÓN EN MATEMÁTICAS, Guanajuato-Mexico; DIEGO JARQUIN, UNIVERSITY OF NEBRASKA, Lincoln-NE; FLAVIO BRESEGHELLO, CNPAF; JAIME CUEVAS, UNIVERSIDAD DE QUINTANA ROO, Quintana Roo-Mexico; RENAUD RINCENT, INRAE, Clermont-Ferrand-France.CROSSA, J.MONTESINOS-LÓPEZ, O. A.PÉREZ-RODRÍGUEZ, P.COSTA-NETO, G.FRITSCHE-NETO, R.ORTIZ, R.MARTINI, J. W. R.LILLEMO, M.MONTESINOS-LÓPEZ, A.JARQUIN, D.BRESEGHELLO, F.CUEVAS, J.RINCENT, R.2022-05-30T05:00:48Z2022-05-30T05:00:48Z2022-05-292022info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bookPartp. 245-283.In: AHMADI, N.; BARTHOLOME, J. (ed.). Genomic prediction of complex traits: methods and protocols. New York: Humana Press, 2022.978-1-0716-2205-6http://www.alice.cnptia.embrapa.br/alice/handle/doc/1143533https://doi.org/10.1007/978-1-0716-2205-6_9eng(Methods in Molecular Biology).info:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2022-05-30T05:00:56Zoai:www.alice.cnptia.embrapa.br:doc/1143533Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542022-05-30T05:00:56Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv Genome and environment based prediction models and methods of complex traits incorporating genotype × environment interaction.
title Genome and environment based prediction models and methods of complex traits incorporating genotype × environment interaction.
spellingShingle Genome and environment based prediction models and methods of complex traits incorporating genotype × environment interaction.
CROSSA, J.
Genomic selection
Genome-enabled prediction
Models with G x E interaction
Melhoramento Genético Vegetal
Genótipo
Interação Genética
Genome
Genomics
Plant breeding
Genotype-environment interaction
title_short Genome and environment based prediction models and methods of complex traits incorporating genotype × environment interaction.
title_full Genome and environment based prediction models and methods of complex traits incorporating genotype × environment interaction.
title_fullStr Genome and environment based prediction models and methods of complex traits incorporating genotype × environment interaction.
title_full_unstemmed Genome and environment based prediction models and methods of complex traits incorporating genotype × environment interaction.
title_sort Genome and environment based prediction models and methods of complex traits incorporating genotype × environment interaction.
author CROSSA, J.
author_facet CROSSA, J.
MONTESINOS-LÓPEZ, O. A.
PÉREZ-RODRÍGUEZ, P.
COSTA-NETO, G.
FRITSCHE-NETO, R.
ORTIZ, R.
MARTINI, J. W. R.
LILLEMO, M.
MONTESINOS-LÓPEZ, A.
JARQUIN, D.
BRESEGHELLO, F.
CUEVAS, J.
RINCENT, R.
author_role author
author2 MONTESINOS-LÓPEZ, O. A.
PÉREZ-RODRÍGUEZ, P.
COSTA-NETO, G.
FRITSCHE-NETO, R.
ORTIZ, R.
MARTINI, J. W. R.
LILLEMO, M.
MONTESINOS-LÓPEZ, A.
JARQUIN, D.
BRESEGHELLO, F.
CUEVAS, J.
RINCENT, R.
author2_role author
author
author
author
author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv JOSE CROSSA, CIMMYT; OSVAL ANTONIO MONTESINOS-LOPEZ, UNIVERSIDAD DE COLIMA, México; PAULINO PEREZ-RODRIGUEZ, COLEGIO DE POSTGRADUADOS, Montecillos-Mexico; GERMANO COSTA-NETO, ESALQ; ROBERTO FRITSCHE-NETO, ESALQ; RODOMIRO ORTIZ, SWEDISH UNIVERSITY OF AGRICULTURAL SCIENCES, Alnarp-Sweden; JOHANNES W. R. MARTINI, CIMMYT; MORTEN LILLEMO, NORWEGIAN UNIVERSITY OF LIFE SCIENCES, Norway; ABELARDO MONTESINOS-LOPEZ, CENTRO DE INVESTIGACIÓN EN MATEMÁTICAS, Guanajuato-Mexico; DIEGO JARQUIN, UNIVERSITY OF NEBRASKA, Lincoln-NE; FLAVIO BRESEGHELLO, CNPAF; JAIME CUEVAS, UNIVERSIDAD DE QUINTANA ROO, Quintana Roo-Mexico; RENAUD RINCENT, INRAE, Clermont-Ferrand-France.
dc.contributor.author.fl_str_mv CROSSA, J.
MONTESINOS-LÓPEZ, O. A.
PÉREZ-RODRÍGUEZ, P.
COSTA-NETO, G.
FRITSCHE-NETO, R.
ORTIZ, R.
MARTINI, J. W. R.
LILLEMO, M.
MONTESINOS-LÓPEZ, A.
JARQUIN, D.
BRESEGHELLO, F.
CUEVAS, J.
RINCENT, R.
dc.subject.por.fl_str_mv Genomic selection
Genome-enabled prediction
Models with G x E interaction
Melhoramento Genético Vegetal
Genótipo
Interação Genética
Genome
Genomics
Plant breeding
Genotype-environment interaction
topic Genomic selection
Genome-enabled prediction
Models with G x E interaction
Melhoramento Genético Vegetal
Genótipo
Interação Genética
Genome
Genomics
Plant breeding
Genotype-environment interaction
description Genomic-enabled prediction models are of paramount importance for the successful implementation of genomic selection (GS) based on breeding values. As opposed to animal breeding, plant breeding includes extensive multienvironment and multiyear field trial data. Hence, genomic-enabled prediction models should include genotype × environment (G × E) interaction, which most of the time increases the prediction performance when the response of lines are different from environment to environment. In this chapter, we describe a historical timeline since 2012 related to advances of the GS models that take into account G × E interaction. We describe theoretical and practical aspects of those GS models, including the gains in prediction performance when including G × E structures for both complex continuous and categorical scale traits. Then, we detailed and explained the main G × E genomic prediction models for complex traits measured in continuous and noncontinuous (categorical) scale. Related to G × E interaction models this review also examine the analyses of the information generated with high-throughput phenotype data (phenomic) and the joint analyses of multitrait and multienvironment field trial data that is also employed in the general assessment of multitrait G × E interaction. The inclusion of nongenomic data in increasing the accuracy and biological reliability of the G × E approach is also outlined. We show the recent advances in large-scale envirotyping (enviromics), and how the use of mechanistic computational modeling can derive the crop growth and development aspects useful for predicting phenotypes and explaining G × E.
publishDate 2022
dc.date.none.fl_str_mv 2022-05-30T05:00:48Z
2022-05-30T05:00:48Z
2022-05-29
2022
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/bookPart
format bookPart
status_str publishedVersion
dc.identifier.uri.fl_str_mv In: AHMADI, N.; BARTHOLOME, J. (ed.). Genomic prediction of complex traits: methods and protocols. New York: Humana Press, 2022.
978-1-0716-2205-6
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1143533
https://doi.org/10.1007/978-1-0716-2205-6_9
identifier_str_mv In: AHMADI, N.; BARTHOLOME, J. (ed.). Genomic prediction of complex traits: methods and protocols. New York: Humana Press, 2022.
978-1-0716-2205-6
url http://www.alice.cnptia.embrapa.br/alice/handle/doc/1143533
https://doi.org/10.1007/978-1-0716-2205-6_9
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv (Methods in Molecular Biology).
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv p. 245-283.
dc.source.none.fl_str_mv reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
collection Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository.name.fl_str_mv Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv cg-riaa@embrapa.br
_version_ 1822721559693885440