Factor analysis applied to genome prediction for high-dimensional phenotypes in pigs

Detalhes bibliográficos
Autor(a) principal: Teixeira, F.R.F.
Data de Publicação: 2016
Outros Autores: Nascimento, M., Nascimento, A.C.C., Silva, F.F. e, Cruz, C.D., Azevedo, C.F., Paixão, D.M., Barroso, L.M.A., Verardo, L.L., Resende, M.D.V. de, Guimarães, S.E.F., Lopes, P.S.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: LOCUS Repositório Institucional da UFV
Texto Completo: http://dx.doi.org/10.4238/gmr.15028231
http://www.locus.ufv.br/handle/123456789/12800
Resumo: The aim of the present study was to propose and evaluate the use of factor analysis (FA) in obtaining latent variables (factors) that represent a set of pig traits simultaneously, for use in genomewide selection (GWS) studies. We used crosses between outbred F2 populations of Brazilian Piau X commercial pigs. Data were obtained on 345 F2 pigs, genotyped for 237 SNPs, with 41 traits. FA allowed us to obtain four biologically interpretable factors: “weight”, “fat”, “loin”, and “performance”. These factors were used as dependent variables in multiple regression models of genomic selection (Bayes A, Bayes B, RR-BLUP, and Bayesian LASSO). The use of FA is presented as an interesting alternative to select individuals for multiple variables simultaneously in GWS studies; accuracy measurements of the factors were similar to those obtained when the original traits were considered individually. The similarities between the top 10% of individuals selected by the factor, and those selected by the individual traits, were also satisfactory. Moreover, the estimated markers effects for the traits were similar to those found for the relevant factor.
id UFV_4f799e63e02cef24075139101d30906f
oai_identifier_str oai:locus.ufv.br:123456789/12800
network_acronym_str UFV
network_name_str LOCUS Repositório Institucional da UFV
repository_id_str 2145
spelling Teixeira, F.R.F.Nascimento, M.Nascimento, A.C.C.Silva, F.F. eCruz, C.D.Azevedo, C.F.Paixão, D.M.Barroso, L.M.A.Verardo, L.L.Resende, M.D.V. deGuimarães, S.E.F.Lopes, P.S.2017-11-07T10:17:20Z2017-11-07T10:17:20Z2016-05-1316765680http://dx.doi.org/10.4238/gmr.15028231http://www.locus.ufv.br/handle/123456789/12800The aim of the present study was to propose and evaluate the use of factor analysis (FA) in obtaining latent variables (factors) that represent a set of pig traits simultaneously, for use in genomewide selection (GWS) studies. We used crosses between outbred F2 populations of Brazilian Piau X commercial pigs. Data were obtained on 345 F2 pigs, genotyped for 237 SNPs, with 41 traits. FA allowed us to obtain four biologically interpretable factors: “weight”, “fat”, “loin”, and “performance”. These factors were used as dependent variables in multiple regression models of genomic selection (Bayes A, Bayes B, RR-BLUP, and Bayesian LASSO). The use of FA is presented as an interesting alternative to select individuals for multiple variables simultaneously in GWS studies; accuracy measurements of the factors were similar to those obtained when the original traits were considered individually. The similarities between the top 10% of individuals selected by the factor, and those selected by the individual traits, were also satisfactory. Moreover, the estimated markers effects for the traits were similar to those found for the relevant factor.engGenetics and Molecular Research15(2), gmr.15028231, May 2016Genome-enabled predictionMultivariate analysisSNP effectsFactor analysis applied to genome prediction for high-dimensional phenotypes in pigsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfinfo:eu-repo/semantics/openAccessreponame:LOCUS Repositório Institucional da UFVinstname:Universidade Federal de Viçosa (UFV)instacron:UFVORIGINALgmr8231_1.pdfgmr8231_1.pdfTexto completoapplication/pdf727970https://locus.ufv.br//bitstream/123456789/12800/1/gmr8231_1.pdf01add2ce447445b934756a8847f52aa0MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://locus.ufv.br//bitstream/123456789/12800/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52THUMBNAILgmr8231_1.pdf.jpggmr8231_1.pdf.jpgIM Thumbnailimage/jpeg4303https://locus.ufv.br//bitstream/123456789/12800/3/gmr8231_1.pdf.jpgc1bcbe5555d360b674020ba206bf3b37MD53123456789/128002017-11-07 22:01:05.892oai:locus.ufv.br:123456789/12800Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://www.locus.ufv.br/oai/requestfabiojreis@ufv.bropendoar:21452017-11-08T01:01:05LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)false
dc.title.en.fl_str_mv Factor analysis applied to genome prediction for high-dimensional phenotypes in pigs
title Factor analysis applied to genome prediction for high-dimensional phenotypes in pigs
spellingShingle Factor analysis applied to genome prediction for high-dimensional phenotypes in pigs
Teixeira, F.R.F.
Genome-enabled prediction
Multivariate analysis
SNP effects
title_short Factor analysis applied to genome prediction for high-dimensional phenotypes in pigs
title_full Factor analysis applied to genome prediction for high-dimensional phenotypes in pigs
title_fullStr Factor analysis applied to genome prediction for high-dimensional phenotypes in pigs
title_full_unstemmed Factor analysis applied to genome prediction for high-dimensional phenotypes in pigs
title_sort Factor analysis applied to genome prediction for high-dimensional phenotypes in pigs
author Teixeira, F.R.F.
author_facet Teixeira, F.R.F.
Nascimento, M.
Nascimento, A.C.C.
Silva, F.F. e
Cruz, C.D.
Azevedo, C.F.
Paixão, D.M.
Barroso, L.M.A.
Verardo, L.L.
Resende, M.D.V. de
Guimarães, S.E.F.
Lopes, P.S.
author_role author
author2 Nascimento, M.
Nascimento, A.C.C.
Silva, F.F. e
Cruz, C.D.
Azevedo, C.F.
Paixão, D.M.
Barroso, L.M.A.
Verardo, L.L.
Resende, M.D.V. de
Guimarães, S.E.F.
Lopes, P.S.
author2_role author
author
author
author
author
author
author
author
author
author
author
dc.contributor.author.fl_str_mv Teixeira, F.R.F.
Nascimento, M.
Nascimento, A.C.C.
Silva, F.F. e
Cruz, C.D.
Azevedo, C.F.
Paixão, D.M.
Barroso, L.M.A.
Verardo, L.L.
Resende, M.D.V. de
Guimarães, S.E.F.
Lopes, P.S.
dc.subject.pt-BR.fl_str_mv Genome-enabled prediction
Multivariate analysis
SNP effects
topic Genome-enabled prediction
Multivariate analysis
SNP effects
description The aim of the present study was to propose and evaluate the use of factor analysis (FA) in obtaining latent variables (factors) that represent a set of pig traits simultaneously, for use in genomewide selection (GWS) studies. We used crosses between outbred F2 populations of Brazilian Piau X commercial pigs. Data were obtained on 345 F2 pigs, genotyped for 237 SNPs, with 41 traits. FA allowed us to obtain four biologically interpretable factors: “weight”, “fat”, “loin”, and “performance”. These factors were used as dependent variables in multiple regression models of genomic selection (Bayes A, Bayes B, RR-BLUP, and Bayesian LASSO). The use of FA is presented as an interesting alternative to select individuals for multiple variables simultaneously in GWS studies; accuracy measurements of the factors were similar to those obtained when the original traits were considered individually. The similarities between the top 10% of individuals selected by the factor, and those selected by the individual traits, were also satisfactory. Moreover, the estimated markers effects for the traits were similar to those found for the relevant factor.
publishDate 2016
dc.date.issued.fl_str_mv 2016-05-13
dc.date.accessioned.fl_str_mv 2017-11-07T10:17:20Z
dc.date.available.fl_str_mv 2017-11-07T10:17:20Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.4238/gmr.15028231
http://www.locus.ufv.br/handle/123456789/12800
dc.identifier.issn.none.fl_str_mv 16765680
identifier_str_mv 16765680
url http://dx.doi.org/10.4238/gmr.15028231
http://www.locus.ufv.br/handle/123456789/12800
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartofseries.pt-BR.fl_str_mv 15(2), gmr.15028231, May 2016
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Genetics and Molecular Research
publisher.none.fl_str_mv Genetics and Molecular Research
dc.source.none.fl_str_mv reponame:LOCUS Repositório Institucional da UFV
instname:Universidade Federal de Viçosa (UFV)
instacron:UFV
instname_str Universidade Federal de Viçosa (UFV)
instacron_str UFV
institution UFV
reponame_str LOCUS Repositório Institucional da UFV
collection LOCUS Repositório Institucional da UFV
bitstream.url.fl_str_mv https://locus.ufv.br//bitstream/123456789/12800/1/gmr8231_1.pdf
https://locus.ufv.br//bitstream/123456789/12800/2/license.txt
https://locus.ufv.br//bitstream/123456789/12800/3/gmr8231_1.pdf.jpg
bitstream.checksum.fl_str_mv 01add2ce447445b934756a8847f52aa0
8a4605be74aa9ea9d79846c1fba20a33
c1bcbe5555d360b674020ba206bf3b37
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv LOCUS Repositório Institucional da UFV - Universidade Federal de Viçosa (UFV)
repository.mail.fl_str_mv fabiojreis@ufv.br
_version_ 1801212989660987392