Integrated omic approaches reveal molecular mechanisms of tolerance during soybean and meloidogyne incognita interactions.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , , , , , , , , , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
Texto Completo: | http://www.alice.cnptia.embrapa.br/alice/handle/doc/1148619 https:// doi.org/10.3390/plants11202744 |
Resumo: | The root-knot nematode (RKN), Meloidogyne incognita, is a devastating soybean pathogen worldwide. The use of resistant cultivars is the most effective method to prevent economic losses caused by RKNs. To elucidate the mechanisms involved in resistance to RKN, we determined the proteome and transcriptome profiles from roots of susceptible (BRS133) and highly tolerant (PI595099) Glycine max genotypes 4, 12, and 30 days after RKN infestation. After in silico analysis, we described major defense molecules and mechanisms considered constitutive responses to nematodeinfestation, such as mTOR, PI3K-Akt, relaxin, and thermogenesis. The integrated data allowed us to identify protein families and metabolic pathways exclusively regulated in tolerant soybean genotypes. Among them, we highlighted the phenylpropanoid pathway as an early, robust, and systemic defense process capable of controlling M. incognita reproduction. Associated with this metabolic pathway, 29 differentially expressed genes encoding 11 different enzymes were identified, mainly from the flavonoid and derivative pathways. Based on differential expression in transcriptomic and proteomic data, as well as in the expression profile by RT?qPCR, and previous studies, we selected and overexpressed the GmPR10 gene in transgenic tobacco to assess its protective effect against M. incognita. Transgenic plants of the T2 generation showed up to 58% reduction in the M. incognita reproduction factor. Finally, data suggest that GmPR10 overexpression can be effective against the plant parasitic nematodeM. incognita, but its mechanism of action remains unclear. These findings will help develop new engineered soybean genotypes with higher performance in response to RKN infections. |
id |
EMBR_1c43474fccf7775092e3be6af7b48dd2 |
---|---|
oai_identifier_str |
oai:www.alice.cnptia.embrapa.br:doc/1148619 |
network_acronym_str |
EMBR |
network_name_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository_id_str |
2154 |
spelling |
Integrated omic approaches reveal molecular mechanisms of tolerance during soybean and meloidogyne incognita interactions.Root-knot nematodeDifferential expressionMeloidogyne IncognitaSojaGlycine MaxTranscriptomeProteomePhenylpropanoidsThe root-knot nematode (RKN), Meloidogyne incognita, is a devastating soybean pathogen worldwide. The use of resistant cultivars is the most effective method to prevent economic losses caused by RKNs. To elucidate the mechanisms involved in resistance to RKN, we determined the proteome and transcriptome profiles from roots of susceptible (BRS133) and highly tolerant (PI595099) Glycine max genotypes 4, 12, and 30 days after RKN infestation. After in silico analysis, we described major defense molecules and mechanisms considered constitutive responses to nematodeinfestation, such as mTOR, PI3K-Akt, relaxin, and thermogenesis. The integrated data allowed us to identify protein families and metabolic pathways exclusively regulated in tolerant soybean genotypes. Among them, we highlighted the phenylpropanoid pathway as an early, robust, and systemic defense process capable of controlling M. incognita reproduction. Associated with this metabolic pathway, 29 differentially expressed genes encoding 11 different enzymes were identified, mainly from the flavonoid and derivative pathways. Based on differential expression in transcriptomic and proteomic data, as well as in the expression profile by RT?qPCR, and previous studies, we selected and overexpressed the GmPR10 gene in transgenic tobacco to assess its protective effect against M. incognita. Transgenic plants of the T2 generation showed up to 58% reduction in the M. incognita reproduction factor. Finally, data suggest that GmPR10 overexpression can be effective against the plant parasitic nematodeM. incognita, but its mechanism of action remains unclear. These findings will help develop new engineered soybean genotypes with higher performance in response to RKN infections.FABRICIO B. M. ARRAES, FEDERAL UNIVERSITY OF RIO GRANDE DO SULDANIEL D. N. VASQUEZ, FEDERAL UNIVERSITY OF RIO GRANDE DO SULMUHAMMED TAHIR, UNIVERSITY OF SOUTHERN DENMARKDANIELE H. PINHEIRO, NATIONAL INSTITUTE OF SCIENCE AND TECHNOLOGYMUHAMMED FAHEEM, NATIONAL UNIVERSITY OF MEDICAL SCIENCES, PAKISTANNAYARA S. FREITAS-ALVES, FEDERAL UNIVERSITY OF PARANÁCLÍDIA E. MOREIRA-PINTO, CNPAEVALDEIR J. V. MOREIRA, UNIVERSITY OF BRASÍLIABRUNO PAES-DE-MELO, CNPAEMARIA E. LISEI-DE-SA, MINAS GERAIS AGRICULTURAL RESEARCH COMPANYCAROLINA VIANNA MORGANTE, CPATSAANA P. Z. MOTA, INRAEISABELA TRISTAN LOURENCO TESSUTTI, CenargenROBERTO COITI TOGAWA, CenargenPRISCILA GRYNBERG, CenargenRODRIGO DA ROCHA FRAGOSO, CNPAEJANICE DE ALMEIDA-ENGLER, INRAEMARTIN R. LARSEN, UNIVERSITY OF SOUTHERN DENMARKMARIA FATIMA GROSSI-DE-SA, Cenargen.ARRAES, F. B. M.VASQUEZ, D. D. N.TAHIR, M.PINHEIRO, D. H.FAHEEM, M.FREITAS-ALVES, N. S.MOREIRA-PINTO, C. E.MOREIRA, V. J. V.PAES-DE-MELO, B.LISEI-DE-SA, M. E.MORGANTE, C. V.MOTA, A. P. Z.LOURENCO, I. T.TOGAWA, R. C.GRYNBERG, P.FRAGOSO, R. da R.ALMEIDA-ENGLER, J. deLARSEN, M. R.GROSSI-DE-SA, M. F.2022-11-23T15:01:20Z2022-11-23T15:01:20Z2022-11-232022info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlePlants, v. 11, 2744, 2022.2223-7747http://www.alice.cnptia.embrapa.br/alice/handle/doc/1148619https:// doi.org/10.3390/plants11202744enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2022-11-23T15:01:20Zoai:www.alice.cnptia.embrapa.br:doc/1148619Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542022-11-23T15:01:20falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542022-11-23T15:01:20Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false |
dc.title.none.fl_str_mv |
Integrated omic approaches reveal molecular mechanisms of tolerance during soybean and meloidogyne incognita interactions. |
title |
Integrated omic approaches reveal molecular mechanisms of tolerance during soybean and meloidogyne incognita interactions. |
spellingShingle |
Integrated omic approaches reveal molecular mechanisms of tolerance during soybean and meloidogyne incognita interactions. ARRAES, F. B. M. Root-knot nematode Differential expression Meloidogyne Incognita Soja Glycine Max Transcriptome Proteome Phenylpropanoids |
title_short |
Integrated omic approaches reveal molecular mechanisms of tolerance during soybean and meloidogyne incognita interactions. |
title_full |
Integrated omic approaches reveal molecular mechanisms of tolerance during soybean and meloidogyne incognita interactions. |
title_fullStr |
Integrated omic approaches reveal molecular mechanisms of tolerance during soybean and meloidogyne incognita interactions. |
title_full_unstemmed |
Integrated omic approaches reveal molecular mechanisms of tolerance during soybean and meloidogyne incognita interactions. |
title_sort |
Integrated omic approaches reveal molecular mechanisms of tolerance during soybean and meloidogyne incognita interactions. |
author |
ARRAES, F. B. M. |
author_facet |
ARRAES, F. B. M. VASQUEZ, D. D. N. TAHIR, M. PINHEIRO, D. H. FAHEEM, M. FREITAS-ALVES, N. S. MOREIRA-PINTO, C. E. MOREIRA, V. J. V. PAES-DE-MELO, B. LISEI-DE-SA, M. E. MORGANTE, C. V. MOTA, A. P. Z. LOURENCO, I. T. TOGAWA, R. C. GRYNBERG, P. FRAGOSO, R. da R. ALMEIDA-ENGLER, J. de LARSEN, M. R. GROSSI-DE-SA, M. F. |
author_role |
author |
author2 |
VASQUEZ, D. D. N. TAHIR, M. PINHEIRO, D. H. FAHEEM, M. FREITAS-ALVES, N. S. MOREIRA-PINTO, C. E. MOREIRA, V. J. V. PAES-DE-MELO, B. LISEI-DE-SA, M. E. MORGANTE, C. V. MOTA, A. P. Z. LOURENCO, I. T. TOGAWA, R. C. GRYNBERG, P. FRAGOSO, R. da R. ALMEIDA-ENGLER, J. de LARSEN, M. R. GROSSI-DE-SA, M. F. |
author2_role |
author author author author author author author author author author author author author author author author author author |
dc.contributor.none.fl_str_mv |
FABRICIO B. M. ARRAES, FEDERAL UNIVERSITY OF RIO GRANDE DO SUL DANIEL D. N. VASQUEZ, FEDERAL UNIVERSITY OF RIO GRANDE DO SUL MUHAMMED TAHIR, UNIVERSITY OF SOUTHERN DENMARK DANIELE H. PINHEIRO, NATIONAL INSTITUTE OF SCIENCE AND TECHNOLOGY MUHAMMED FAHEEM, NATIONAL UNIVERSITY OF MEDICAL SCIENCES, PAKISTAN NAYARA S. FREITAS-ALVES, FEDERAL UNIVERSITY OF PARANÁ CLÍDIA E. MOREIRA-PINTO, CNPAE VALDEIR J. V. MOREIRA, UNIVERSITY OF BRASÍLIA BRUNO PAES-DE-MELO, CNPAE MARIA E. LISEI-DE-SA, MINAS GERAIS AGRICULTURAL RESEARCH COMPANY CAROLINA VIANNA MORGANTE, CPATSA ANA P. Z. MOTA, INRAE ISABELA TRISTAN LOURENCO TESSUTTI, Cenargen ROBERTO COITI TOGAWA, Cenargen PRISCILA GRYNBERG, Cenargen RODRIGO DA ROCHA FRAGOSO, CNPAE JANICE DE ALMEIDA-ENGLER, INRAE MARTIN R. LARSEN, UNIVERSITY OF SOUTHERN DENMARK MARIA FATIMA GROSSI-DE-SA, Cenargen. |
dc.contributor.author.fl_str_mv |
ARRAES, F. B. M. VASQUEZ, D. D. N. TAHIR, M. PINHEIRO, D. H. FAHEEM, M. FREITAS-ALVES, N. S. MOREIRA-PINTO, C. E. MOREIRA, V. J. V. PAES-DE-MELO, B. LISEI-DE-SA, M. E. MORGANTE, C. V. MOTA, A. P. Z. LOURENCO, I. T. TOGAWA, R. C. GRYNBERG, P. FRAGOSO, R. da R. ALMEIDA-ENGLER, J. de LARSEN, M. R. GROSSI-DE-SA, M. F. |
dc.subject.por.fl_str_mv |
Root-knot nematode Differential expression Meloidogyne Incognita Soja Glycine Max Transcriptome Proteome Phenylpropanoids |
topic |
Root-knot nematode Differential expression Meloidogyne Incognita Soja Glycine Max Transcriptome Proteome Phenylpropanoids |
description |
The root-knot nematode (RKN), Meloidogyne incognita, is a devastating soybean pathogen worldwide. The use of resistant cultivars is the most effective method to prevent economic losses caused by RKNs. To elucidate the mechanisms involved in resistance to RKN, we determined the proteome and transcriptome profiles from roots of susceptible (BRS133) and highly tolerant (PI595099) Glycine max genotypes 4, 12, and 30 days after RKN infestation. After in silico analysis, we described major defense molecules and mechanisms considered constitutive responses to nematodeinfestation, such as mTOR, PI3K-Akt, relaxin, and thermogenesis. The integrated data allowed us to identify protein families and metabolic pathways exclusively regulated in tolerant soybean genotypes. Among them, we highlighted the phenylpropanoid pathway as an early, robust, and systemic defense process capable of controlling M. incognita reproduction. Associated with this metabolic pathway, 29 differentially expressed genes encoding 11 different enzymes were identified, mainly from the flavonoid and derivative pathways. Based on differential expression in transcriptomic and proteomic data, as well as in the expression profile by RT?qPCR, and previous studies, we selected and overexpressed the GmPR10 gene in transgenic tobacco to assess its protective effect against M. incognita. Transgenic plants of the T2 generation showed up to 58% reduction in the M. incognita reproduction factor. Finally, data suggest that GmPR10 overexpression can be effective against the plant parasitic nematodeM. incognita, but its mechanism of action remains unclear. These findings will help develop new engineered soybean genotypes with higher performance in response to RKN infections. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-11-23T15:01:20Z 2022-11-23T15:01:20Z 2022-11-23 2022 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
Plants, v. 11, 2744, 2022. 2223-7747 http://www.alice.cnptia.embrapa.br/alice/handle/doc/1148619 https:// doi.org/10.3390/plants11202744 |
identifier_str_mv |
Plants, v. 11, 2744, 2022. 2223-7747 |
url |
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1148619 https:// doi.org/10.3390/plants11202744 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa) instacron:EMBRAPA |
instname_str |
Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
instacron_str |
EMBRAPA |
institution |
EMBRAPA |
reponame_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
collection |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository.name.fl_str_mv |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
repository.mail.fl_str_mv |
cg-riaa@embrapa.br |
_version_ |
1794503534905917440 |