Integrated omic approaches reveal molecular mechanisms of tolerance during soybean and meloidogyne incognita interactions.

Detalhes bibliográficos
Autor(a) principal: ARRAES, F. B. M.
Data de Publicação: 2022
Outros Autores: VASQUEZ, D. D. N., TAHIR, M., PINHEIRO, D. H., FAHEEM, M., FREITAS-ALVES, N. S., MOREIRA-PINTO, C. E., MOREIRA, V. J. V., PAES-DE-MELO, B., LISEI-DE-SA, M. E., MORGANTE, C. V., MOTA, A. P. Z., LOURENCO, I. T., TOGAWA, R. C., GRYNBERG, P., FRAGOSO, R. da R., ALMEIDA-ENGLER, J. de, LARSEN, M. R., GROSSI-DE-SA, M. F.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
Texto Completo: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1148619
https:// doi.org/10.3390/plants11202744
Resumo: The root-knot nematode (RKN), Meloidogyne incognita, is a devastating soybean pathogen worldwide. The use of resistant cultivars is the most effective method to prevent economic losses caused by RKNs. To elucidate the mechanisms involved in resistance to RKN, we determined the proteome and transcriptome profiles from roots of susceptible (BRS133) and highly tolerant (PI595099) Glycine max genotypes 4, 12, and 30 days after RKN infestation. After in silico analysis, we described major defense molecules and mechanisms considered constitutive responses to nematodeinfestation, such as mTOR, PI3K-Akt, relaxin, and thermogenesis. The integrated data allowed us to identify protein families and metabolic pathways exclusively regulated in tolerant soybean genotypes. Among them, we highlighted the phenylpropanoid pathway as an early, robust, and systemic defense process capable of controlling M. incognita reproduction. Associated with this metabolic pathway, 29 differentially expressed genes encoding 11 different enzymes were identified, mainly from the flavonoid and derivative pathways. Based on differential expression in transcriptomic and proteomic data, as well as in the expression profile by RT?qPCR, and previous studies, we selected and overexpressed the GmPR10 gene in transgenic tobacco to assess its protective effect against M. incognita. Transgenic plants of the T2 generation showed up to 58% reduction in the M. incognita reproduction factor. Finally, data suggest that GmPR10 overexpression can be effective against the plant parasitic nematodeM. incognita, but its mechanism of action remains unclear. These findings will help develop new engineered soybean genotypes with higher performance in response to RKN infections.
id EMBR_1c43474fccf7775092e3be6af7b48dd2
oai_identifier_str oai:www.alice.cnptia.embrapa.br:doc/1148619
network_acronym_str EMBR
network_name_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository_id_str 2154
spelling Integrated omic approaches reveal molecular mechanisms of tolerance during soybean and meloidogyne incognita interactions.Root-knot nematodeDifferential expressionMeloidogyne IncognitaSojaGlycine MaxTranscriptomeProteomePhenylpropanoidsThe root-knot nematode (RKN), Meloidogyne incognita, is a devastating soybean pathogen worldwide. The use of resistant cultivars is the most effective method to prevent economic losses caused by RKNs. To elucidate the mechanisms involved in resistance to RKN, we determined the proteome and transcriptome profiles from roots of susceptible (BRS133) and highly tolerant (PI595099) Glycine max genotypes 4, 12, and 30 days after RKN infestation. After in silico analysis, we described major defense molecules and mechanisms considered constitutive responses to nematodeinfestation, such as mTOR, PI3K-Akt, relaxin, and thermogenesis. The integrated data allowed us to identify protein families and metabolic pathways exclusively regulated in tolerant soybean genotypes. Among them, we highlighted the phenylpropanoid pathway as an early, robust, and systemic defense process capable of controlling M. incognita reproduction. Associated with this metabolic pathway, 29 differentially expressed genes encoding 11 different enzymes were identified, mainly from the flavonoid and derivative pathways. Based on differential expression in transcriptomic and proteomic data, as well as in the expression profile by RT?qPCR, and previous studies, we selected and overexpressed the GmPR10 gene in transgenic tobacco to assess its protective effect against M. incognita. Transgenic plants of the T2 generation showed up to 58% reduction in the M. incognita reproduction factor. Finally, data suggest that GmPR10 overexpression can be effective against the plant parasitic nematodeM. incognita, but its mechanism of action remains unclear. These findings will help develop new engineered soybean genotypes with higher performance in response to RKN infections.FABRICIO B. M. ARRAES, FEDERAL UNIVERSITY OF RIO GRANDE DO SULDANIEL D. N. VASQUEZ, FEDERAL UNIVERSITY OF RIO GRANDE DO SULMUHAMMED TAHIR, UNIVERSITY OF SOUTHERN DENMARKDANIELE H. PINHEIRO, NATIONAL INSTITUTE OF SCIENCE AND TECHNOLOGYMUHAMMED FAHEEM, NATIONAL UNIVERSITY OF MEDICAL SCIENCES, PAKISTANNAYARA S. FREITAS-ALVES, FEDERAL UNIVERSITY OF PARANÁCLÍDIA E. MOREIRA-PINTO, CNPAEVALDEIR J. V. MOREIRA, UNIVERSITY OF BRASÍLIABRUNO PAES-DE-MELO, CNPAEMARIA E. LISEI-DE-SA, MINAS GERAIS AGRICULTURAL RESEARCH COMPANYCAROLINA VIANNA MORGANTE, CPATSAANA P. Z. MOTA, INRAEISABELA TRISTAN LOURENCO TESSUTTI, CenargenROBERTO COITI TOGAWA, CenargenPRISCILA GRYNBERG, CenargenRODRIGO DA ROCHA FRAGOSO, CNPAEJANICE DE ALMEIDA-ENGLER, INRAEMARTIN R. LARSEN, UNIVERSITY OF SOUTHERN DENMARKMARIA FATIMA GROSSI-DE-SA, Cenargen.ARRAES, F. B. M.VASQUEZ, D. D. N.TAHIR, M.PINHEIRO, D. H.FAHEEM, M.FREITAS-ALVES, N. S.MOREIRA-PINTO, C. E.MOREIRA, V. J. V.PAES-DE-MELO, B.LISEI-DE-SA, M. E.MORGANTE, C. V.MOTA, A. P. Z.LOURENCO, I. T.TOGAWA, R. C.GRYNBERG, P.FRAGOSO, R. da R.ALMEIDA-ENGLER, J. deLARSEN, M. R.GROSSI-DE-SA, M. F.2022-11-23T15:01:20Z2022-11-23T15:01:20Z2022-11-232022info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlePlants, v. 11, 2744, 2022.2223-7747http://www.alice.cnptia.embrapa.br/alice/handle/doc/1148619https:// doi.org/10.3390/plants11202744enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2022-11-23T15:01:20Zoai:www.alice.cnptia.embrapa.br:doc/1148619Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542022-11-23T15:01:20falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542022-11-23T15:01:20Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv Integrated omic approaches reveal molecular mechanisms of tolerance during soybean and meloidogyne incognita interactions.
title Integrated omic approaches reveal molecular mechanisms of tolerance during soybean and meloidogyne incognita interactions.
spellingShingle Integrated omic approaches reveal molecular mechanisms of tolerance during soybean and meloidogyne incognita interactions.
ARRAES, F. B. M.
Root-knot nematode
Differential expression
Meloidogyne Incognita
Soja
Glycine Max
Transcriptome
Proteome
Phenylpropanoids
title_short Integrated omic approaches reveal molecular mechanisms of tolerance during soybean and meloidogyne incognita interactions.
title_full Integrated omic approaches reveal molecular mechanisms of tolerance during soybean and meloidogyne incognita interactions.
title_fullStr Integrated omic approaches reveal molecular mechanisms of tolerance during soybean and meloidogyne incognita interactions.
title_full_unstemmed Integrated omic approaches reveal molecular mechanisms of tolerance during soybean and meloidogyne incognita interactions.
title_sort Integrated omic approaches reveal molecular mechanisms of tolerance during soybean and meloidogyne incognita interactions.
author ARRAES, F. B. M.
author_facet ARRAES, F. B. M.
VASQUEZ, D. D. N.
TAHIR, M.
PINHEIRO, D. H.
FAHEEM, M.
FREITAS-ALVES, N. S.
MOREIRA-PINTO, C. E.
MOREIRA, V. J. V.
PAES-DE-MELO, B.
LISEI-DE-SA, M. E.
MORGANTE, C. V.
MOTA, A. P. Z.
LOURENCO, I. T.
TOGAWA, R. C.
GRYNBERG, P.
FRAGOSO, R. da R.
ALMEIDA-ENGLER, J. de
LARSEN, M. R.
GROSSI-DE-SA, M. F.
author_role author
author2 VASQUEZ, D. D. N.
TAHIR, M.
PINHEIRO, D. H.
FAHEEM, M.
FREITAS-ALVES, N. S.
MOREIRA-PINTO, C. E.
MOREIRA, V. J. V.
PAES-DE-MELO, B.
LISEI-DE-SA, M. E.
MORGANTE, C. V.
MOTA, A. P. Z.
LOURENCO, I. T.
TOGAWA, R. C.
GRYNBERG, P.
FRAGOSO, R. da R.
ALMEIDA-ENGLER, J. de
LARSEN, M. R.
GROSSI-DE-SA, M. F.
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv FABRICIO B. M. ARRAES, FEDERAL UNIVERSITY OF RIO GRANDE DO SUL
DANIEL D. N. VASQUEZ, FEDERAL UNIVERSITY OF RIO GRANDE DO SUL
MUHAMMED TAHIR, UNIVERSITY OF SOUTHERN DENMARK
DANIELE H. PINHEIRO, NATIONAL INSTITUTE OF SCIENCE AND TECHNOLOGY
MUHAMMED FAHEEM, NATIONAL UNIVERSITY OF MEDICAL SCIENCES, PAKISTAN
NAYARA S. FREITAS-ALVES, FEDERAL UNIVERSITY OF PARANÁ
CLÍDIA E. MOREIRA-PINTO, CNPAE
VALDEIR J. V. MOREIRA, UNIVERSITY OF BRASÍLIA
BRUNO PAES-DE-MELO, CNPAE
MARIA E. LISEI-DE-SA, MINAS GERAIS AGRICULTURAL RESEARCH COMPANY
CAROLINA VIANNA MORGANTE, CPATSA
ANA P. Z. MOTA, INRAE
ISABELA TRISTAN LOURENCO TESSUTTI, Cenargen
ROBERTO COITI TOGAWA, Cenargen
PRISCILA GRYNBERG, Cenargen
RODRIGO DA ROCHA FRAGOSO, CNPAE
JANICE DE ALMEIDA-ENGLER, INRAE
MARTIN R. LARSEN, UNIVERSITY OF SOUTHERN DENMARK
MARIA FATIMA GROSSI-DE-SA, Cenargen.
dc.contributor.author.fl_str_mv ARRAES, F. B. M.
VASQUEZ, D. D. N.
TAHIR, M.
PINHEIRO, D. H.
FAHEEM, M.
FREITAS-ALVES, N. S.
MOREIRA-PINTO, C. E.
MOREIRA, V. J. V.
PAES-DE-MELO, B.
LISEI-DE-SA, M. E.
MORGANTE, C. V.
MOTA, A. P. Z.
LOURENCO, I. T.
TOGAWA, R. C.
GRYNBERG, P.
FRAGOSO, R. da R.
ALMEIDA-ENGLER, J. de
LARSEN, M. R.
GROSSI-DE-SA, M. F.
dc.subject.por.fl_str_mv Root-knot nematode
Differential expression
Meloidogyne Incognita
Soja
Glycine Max
Transcriptome
Proteome
Phenylpropanoids
topic Root-knot nematode
Differential expression
Meloidogyne Incognita
Soja
Glycine Max
Transcriptome
Proteome
Phenylpropanoids
description The root-knot nematode (RKN), Meloidogyne incognita, is a devastating soybean pathogen worldwide. The use of resistant cultivars is the most effective method to prevent economic losses caused by RKNs. To elucidate the mechanisms involved in resistance to RKN, we determined the proteome and transcriptome profiles from roots of susceptible (BRS133) and highly tolerant (PI595099) Glycine max genotypes 4, 12, and 30 days after RKN infestation. After in silico analysis, we described major defense molecules and mechanisms considered constitutive responses to nematodeinfestation, such as mTOR, PI3K-Akt, relaxin, and thermogenesis. The integrated data allowed us to identify protein families and metabolic pathways exclusively regulated in tolerant soybean genotypes. Among them, we highlighted the phenylpropanoid pathway as an early, robust, and systemic defense process capable of controlling M. incognita reproduction. Associated with this metabolic pathway, 29 differentially expressed genes encoding 11 different enzymes were identified, mainly from the flavonoid and derivative pathways. Based on differential expression in transcriptomic and proteomic data, as well as in the expression profile by RT?qPCR, and previous studies, we selected and overexpressed the GmPR10 gene in transgenic tobacco to assess its protective effect against M. incognita. Transgenic plants of the T2 generation showed up to 58% reduction in the M. incognita reproduction factor. Finally, data suggest that GmPR10 overexpression can be effective against the plant parasitic nematodeM. incognita, but its mechanism of action remains unclear. These findings will help develop new engineered soybean genotypes with higher performance in response to RKN infections.
publishDate 2022
dc.date.none.fl_str_mv 2022-11-23T15:01:20Z
2022-11-23T15:01:20Z
2022-11-23
2022
dc.type.driver.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv Plants, v. 11, 2744, 2022.
2223-7747
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1148619
https:// doi.org/10.3390/plants11202744
identifier_str_mv Plants, v. 11, 2744, 2022.
2223-7747
url http://www.alice.cnptia.embrapa.br/alice/handle/doc/1148619
https:// doi.org/10.3390/plants11202744
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
collection Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository.name.fl_str_mv Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv cg-riaa@embrapa.br
_version_ 1794503534905917440