Strategies for monitoring within-feld soybean yield using Sentinel-2 Vis-NIR-SWIR spectral bands and machine learning regression methods.

Detalhes bibliográficos
Autor(a) principal: CRUSIOL, L. G. T.
Data de Publicação: 2022
Outros Autores: SUN, L., SIBALDELLI, R. N. R., FELIPE JUNIOR, V., FURLANETI, W. X., CHEN, R., SUN, Z., WUYUN, D., CHEN, Z., NANNI, M. R., FURLANETTO, R. H., CEZAR, E., NEPOMUCENO, A. L., FARIAS, J. R. B.
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
Texto Completo: http://www.alice.cnptia.embrapa.br/alice/handle/doc/1151089
id EMBR_1ea6adbca3bebaa820e0281e511e32d3
oai_identifier_str oai:www.alice.cnptia.embrapa.br:doc/1151089
network_acronym_str EMBR
network_name_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository_id_str 2154
spelling Strategies for monitoring within-feld soybean yield using Sentinel-2 Vis-NIR-SWIR spectral bands and machine learning regression methods.SojaMaquinaRaio InfravermelhoSoybeansYield mappingYield monitoringMultispectral imagerySpectral analysisL. G.T. CRUSIOL; LIANG SUN, MINISTRY OF AGRICULTURE; RUBSON NATAL RIBEIRO SIBALDELLI, CNPSO; V. FELIPE JUNIOR, INTEGRADA COOPERATIVA AGROINDUSTRIAL; W. X. FURLANETI, INTEGRADA COOPERATIVA AGROINDUSTRIAL; R. CHEN, MINISTRY OF AGRICULTURE; Z. SUN, MINISTRY OF AGRICULTURE; D. WUYUN, MINISTRY OF AGRICULTURE; Z. CHEN, FOOD AND AGRICULTURAL ORGANIZATION OF THE UNITED NATIONS; M. R. NANNI, STATE UNIVERSITY OF MARINGÁ; R. H. FURLANETTO, STATE UNIVERSITY OF MARINGÁ; E. CEZAR, STATE UNIVERSITY OF MARINGÁ; ALEXANDRE LIMA NEPOMUCENO, CNPSO; JOSE RENATO BOUCAS FARIAS, CNPSO.CRUSIOL, L. G. T.SUN, L.SIBALDELLI, R. N. R.FELIPE JUNIOR, V.FURLANETI, W. X.CHEN, R.SUN, Z.WUYUN, D.CHEN, Z.NANNI, M. R.FURLANETTO, R. H.CEZAR, E.NEPOMUCENO, A. L.FARIAS, J. R. B.2023-01-19T20:02:52Z2023-01-19T20:02:52Z2023-01-192022info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlePrecision Agriculture, v. 23, p. 1093-1123, 2022.http://www.alice.cnptia.embrapa.br/alice/handle/doc/115108910.1007/s11119-022-09876-5enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2023-01-19T20:02:52Zoai:www.alice.cnptia.embrapa.br:doc/1151089Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542023-01-19T20:02:52falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542023-01-19T20:02:52Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false
dc.title.none.fl_str_mv Strategies for monitoring within-feld soybean yield using Sentinel-2 Vis-NIR-SWIR spectral bands and machine learning regression methods.
title Strategies for monitoring within-feld soybean yield using Sentinel-2 Vis-NIR-SWIR spectral bands and machine learning regression methods.
spellingShingle Strategies for monitoring within-feld soybean yield using Sentinel-2 Vis-NIR-SWIR spectral bands and machine learning regression methods.
CRUSIOL, L. G. T.
Soja
Maquina
Raio Infravermelho
Soybeans
Yield mapping
Yield monitoring
Multispectral imagery
Spectral analysis
title_short Strategies for monitoring within-feld soybean yield using Sentinel-2 Vis-NIR-SWIR spectral bands and machine learning regression methods.
title_full Strategies for monitoring within-feld soybean yield using Sentinel-2 Vis-NIR-SWIR spectral bands and machine learning regression methods.
title_fullStr Strategies for monitoring within-feld soybean yield using Sentinel-2 Vis-NIR-SWIR spectral bands and machine learning regression methods.
title_full_unstemmed Strategies for monitoring within-feld soybean yield using Sentinel-2 Vis-NIR-SWIR spectral bands and machine learning regression methods.
title_sort Strategies for monitoring within-feld soybean yield using Sentinel-2 Vis-NIR-SWIR spectral bands and machine learning regression methods.
author CRUSIOL, L. G. T.
author_facet CRUSIOL, L. G. T.
SUN, L.
SIBALDELLI, R. N. R.
FELIPE JUNIOR, V.
FURLANETI, W. X.
CHEN, R.
SUN, Z.
WUYUN, D.
CHEN, Z.
NANNI, M. R.
FURLANETTO, R. H.
CEZAR, E.
NEPOMUCENO, A. L.
FARIAS, J. R. B.
author_role author
author2 SUN, L.
SIBALDELLI, R. N. R.
FELIPE JUNIOR, V.
FURLANETI, W. X.
CHEN, R.
SUN, Z.
WUYUN, D.
CHEN, Z.
NANNI, M. R.
FURLANETTO, R. H.
CEZAR, E.
NEPOMUCENO, A. L.
FARIAS, J. R. B.
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author
dc.contributor.none.fl_str_mv L. G.T. CRUSIOL; LIANG SUN, MINISTRY OF AGRICULTURE; RUBSON NATAL RIBEIRO SIBALDELLI, CNPSO; V. FELIPE JUNIOR, INTEGRADA COOPERATIVA AGROINDUSTRIAL; W. X. FURLANETI, INTEGRADA COOPERATIVA AGROINDUSTRIAL; R. CHEN, MINISTRY OF AGRICULTURE; Z. SUN, MINISTRY OF AGRICULTURE; D. WUYUN, MINISTRY OF AGRICULTURE; Z. CHEN, FOOD AND AGRICULTURAL ORGANIZATION OF THE UNITED NATIONS; M. R. NANNI, STATE UNIVERSITY OF MARINGÁ; R. H. FURLANETTO, STATE UNIVERSITY OF MARINGÁ; E. CEZAR, STATE UNIVERSITY OF MARINGÁ; ALEXANDRE LIMA NEPOMUCENO, CNPSO; JOSE RENATO BOUCAS FARIAS, CNPSO.
dc.contributor.author.fl_str_mv CRUSIOL, L. G. T.
SUN, L.
SIBALDELLI, R. N. R.
FELIPE JUNIOR, V.
FURLANETI, W. X.
CHEN, R.
SUN, Z.
WUYUN, D.
CHEN, Z.
NANNI, M. R.
FURLANETTO, R. H.
CEZAR, E.
NEPOMUCENO, A. L.
FARIAS, J. R. B.
dc.subject.por.fl_str_mv Soja
Maquina
Raio Infravermelho
Soybeans
Yield mapping
Yield monitoring
Multispectral imagery
Spectral analysis
topic Soja
Maquina
Raio Infravermelho
Soybeans
Yield mapping
Yield monitoring
Multispectral imagery
Spectral analysis
publishDate 2022
dc.date.none.fl_str_mv 2022
2023-01-19T20:02:52Z
2023-01-19T20:02:52Z
2023-01-19
dc.type.driver.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv Precision Agriculture, v. 23, p. 1093-1123, 2022.
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1151089
10.1007/s11119-022-09876-5
identifier_str_mv Precision Agriculture, v. 23, p. 1093-1123, 2022.
10.1007/s11119-022-09876-5
url http://www.alice.cnptia.embrapa.br/alice/handle/doc/1151089
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron:EMBRAPA
instname_str Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
instacron_str EMBRAPA
institution EMBRAPA
reponame_str Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
collection Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)
repository.name.fl_str_mv Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)
repository.mail.fl_str_mv cg-riaa@embrapa.br
_version_ 1794503538211028992