Strategies for monitoring within-feld soybean yield using Sentinel-2 Vis-NIR-SWIR spectral bands and machine learning regression methods.
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , , , , , , , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
Texto Completo: | http://www.alice.cnptia.embrapa.br/alice/handle/doc/1151089 |
id |
EMBR_1ea6adbca3bebaa820e0281e511e32d3 |
---|---|
oai_identifier_str |
oai:www.alice.cnptia.embrapa.br:doc/1151089 |
network_acronym_str |
EMBR |
network_name_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository_id_str |
2154 |
spelling |
Strategies for monitoring within-feld soybean yield using Sentinel-2 Vis-NIR-SWIR spectral bands and machine learning regression methods.SojaMaquinaRaio InfravermelhoSoybeansYield mappingYield monitoringMultispectral imagerySpectral analysisL. G.T. CRUSIOL; LIANG SUN, MINISTRY OF AGRICULTURE; RUBSON NATAL RIBEIRO SIBALDELLI, CNPSO; V. FELIPE JUNIOR, INTEGRADA COOPERATIVA AGROINDUSTRIAL; W. X. FURLANETI, INTEGRADA COOPERATIVA AGROINDUSTRIAL; R. CHEN, MINISTRY OF AGRICULTURE; Z. SUN, MINISTRY OF AGRICULTURE; D. WUYUN, MINISTRY OF AGRICULTURE; Z. CHEN, FOOD AND AGRICULTURAL ORGANIZATION OF THE UNITED NATIONS; M. R. NANNI, STATE UNIVERSITY OF MARINGÁ; R. H. FURLANETTO, STATE UNIVERSITY OF MARINGÁ; E. CEZAR, STATE UNIVERSITY OF MARINGÁ; ALEXANDRE LIMA NEPOMUCENO, CNPSO; JOSE RENATO BOUCAS FARIAS, CNPSO.CRUSIOL, L. G. T.SUN, L.SIBALDELLI, R. N. R.FELIPE JUNIOR, V.FURLANETI, W. X.CHEN, R.SUN, Z.WUYUN, D.CHEN, Z.NANNI, M. R.FURLANETTO, R. H.CEZAR, E.NEPOMUCENO, A. L.FARIAS, J. R. B.2023-01-19T20:02:52Z2023-01-19T20:02:52Z2023-01-192022info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlePrecision Agriculture, v. 23, p. 1093-1123, 2022.http://www.alice.cnptia.embrapa.br/alice/handle/doc/115108910.1007/s11119-022-09876-5enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice)instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa)instacron:EMBRAPA2023-01-19T20:02:52Zoai:www.alice.cnptia.embrapa.br:doc/1151089Repositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestopendoar:21542023-01-19T20:02:52falseRepositório InstitucionalPUBhttps://www.alice.cnptia.embrapa.br/oai/requestcg-riaa@embrapa.bropendoar:21542023-01-19T20:02:52Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa)false |
dc.title.none.fl_str_mv |
Strategies for monitoring within-feld soybean yield using Sentinel-2 Vis-NIR-SWIR spectral bands and machine learning regression methods. |
title |
Strategies for monitoring within-feld soybean yield using Sentinel-2 Vis-NIR-SWIR spectral bands and machine learning regression methods. |
spellingShingle |
Strategies for monitoring within-feld soybean yield using Sentinel-2 Vis-NIR-SWIR spectral bands and machine learning regression methods. CRUSIOL, L. G. T. Soja Maquina Raio Infravermelho Soybeans Yield mapping Yield monitoring Multispectral imagery Spectral analysis |
title_short |
Strategies for monitoring within-feld soybean yield using Sentinel-2 Vis-NIR-SWIR spectral bands and machine learning regression methods. |
title_full |
Strategies for monitoring within-feld soybean yield using Sentinel-2 Vis-NIR-SWIR spectral bands and machine learning regression methods. |
title_fullStr |
Strategies for monitoring within-feld soybean yield using Sentinel-2 Vis-NIR-SWIR spectral bands and machine learning regression methods. |
title_full_unstemmed |
Strategies for monitoring within-feld soybean yield using Sentinel-2 Vis-NIR-SWIR spectral bands and machine learning regression methods. |
title_sort |
Strategies for monitoring within-feld soybean yield using Sentinel-2 Vis-NIR-SWIR spectral bands and machine learning regression methods. |
author |
CRUSIOL, L. G. T. |
author_facet |
CRUSIOL, L. G. T. SUN, L. SIBALDELLI, R. N. R. FELIPE JUNIOR, V. FURLANETI, W. X. CHEN, R. SUN, Z. WUYUN, D. CHEN, Z. NANNI, M. R. FURLANETTO, R. H. CEZAR, E. NEPOMUCENO, A. L. FARIAS, J. R. B. |
author_role |
author |
author2 |
SUN, L. SIBALDELLI, R. N. R. FELIPE JUNIOR, V. FURLANETI, W. X. CHEN, R. SUN, Z. WUYUN, D. CHEN, Z. NANNI, M. R. FURLANETTO, R. H. CEZAR, E. NEPOMUCENO, A. L. FARIAS, J. R. B. |
author2_role |
author author author author author author author author author author author author author |
dc.contributor.none.fl_str_mv |
L. G.T. CRUSIOL; LIANG SUN, MINISTRY OF AGRICULTURE; RUBSON NATAL RIBEIRO SIBALDELLI, CNPSO; V. FELIPE JUNIOR, INTEGRADA COOPERATIVA AGROINDUSTRIAL; W. X. FURLANETI, INTEGRADA COOPERATIVA AGROINDUSTRIAL; R. CHEN, MINISTRY OF AGRICULTURE; Z. SUN, MINISTRY OF AGRICULTURE; D. WUYUN, MINISTRY OF AGRICULTURE; Z. CHEN, FOOD AND AGRICULTURAL ORGANIZATION OF THE UNITED NATIONS; M. R. NANNI, STATE UNIVERSITY OF MARINGÁ; R. H. FURLANETTO, STATE UNIVERSITY OF MARINGÁ; E. CEZAR, STATE UNIVERSITY OF MARINGÁ; ALEXANDRE LIMA NEPOMUCENO, CNPSO; JOSE RENATO BOUCAS FARIAS, CNPSO. |
dc.contributor.author.fl_str_mv |
CRUSIOL, L. G. T. SUN, L. SIBALDELLI, R. N. R. FELIPE JUNIOR, V. FURLANETI, W. X. CHEN, R. SUN, Z. WUYUN, D. CHEN, Z. NANNI, M. R. FURLANETTO, R. H. CEZAR, E. NEPOMUCENO, A. L. FARIAS, J. R. B. |
dc.subject.por.fl_str_mv |
Soja Maquina Raio Infravermelho Soybeans Yield mapping Yield monitoring Multispectral imagery Spectral analysis |
topic |
Soja Maquina Raio Infravermelho Soybeans Yield mapping Yield monitoring Multispectral imagery Spectral analysis |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022 2023-01-19T20:02:52Z 2023-01-19T20:02:52Z 2023-01-19 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
Precision Agriculture, v. 23, p. 1093-1123, 2022. http://www.alice.cnptia.embrapa.br/alice/handle/doc/1151089 10.1007/s11119-022-09876-5 |
identifier_str_mv |
Precision Agriculture, v. 23, p. 1093-1123, 2022. 10.1007/s11119-022-09876-5 |
url |
http://www.alice.cnptia.embrapa.br/alice/handle/doc/1151089 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) instname:Empresa Brasileira de Pesquisa Agropecuária (Embrapa) instacron:EMBRAPA |
instname_str |
Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
instacron_str |
EMBRAPA |
institution |
EMBRAPA |
reponame_str |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
collection |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) |
repository.name.fl_str_mv |
Repositório Institucional da EMBRAPA (Repository Open Access to Scientific Information from EMBRAPA - Alice) - Empresa Brasileira de Pesquisa Agropecuária (Embrapa) |
repository.mail.fl_str_mv |
cg-riaa@embrapa.br |
_version_ |
1794503538211028992 |